1. |
Zhao Yuqian, Wang Xiaohong, Wang Xiaofang, et al. Retinal vessels segmentation based on level set and region growing. Pattern Recognit, 2014, 47(7): 2437-2446.
|
2. |
梁礼明, 黄朝林, 石霏, 等. 融合形状先验的水平集眼底图像血管分割. 计算机学报, 2018, 41(7): 1678-1692.
|
3. |
Yin Y, Adel M, Bourennane S. Retinal vessel segmentation using a probabilistic tracking method. Pattern Recognit, 2012, 45(4): 1235-1244.
|
4. |
Nguyen U T V, Bhuiyan A, Park L A F, et al. An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognit, 2013, 46(3): 703-715.
|
5. |
Zhu Chengzhang, Zou Beiji, Zhao Rongchang, et al. Retinal vessel segmentation in colour fundus images using extreme learning machine. Comput Med Imaging Graph, 2017, 55: 68-77.
|
6. |
Memari N, Ramli A R, Bin S M I, et al. Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier. PloS One, 2017, 12(12): 1-35.
|
7. |
梁礼明, 刘博文, 杨海龙, 等. 基于多特征融合的有监督视网膜血管提取. 计算机学报, 2018, 41(11): 2566-2580.
|
8. |
Ganin Y, Lempitsky V. Nˆ4-Fields: neural network nearest neighbor fields for image transforms// Proceedings of the 12th Asian Conference on Computer Vision (ACCV). Singapore: Springer, 2014: 536-551.
|
9. |
Yang J, Price B L, Cohen S, et al. Object contour detection with a fully convolutional encoder-decoder network//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 193-202.
|
10. |
Xie S, Tu Z. Holistically-nested edge detection. Int J Comput Vis, 2015, 125(1-3): 3-18.
|
11. |
梁礼明, 盛校棋, 蓝智敏, 等. 自适应尺度信息的U型视网膜血管分割算法. 光学学报, 2019, 39(8): 126-140.
|
12. |
Soomro T A, Afifi A J, Gao J B, et al. Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Syst Appl, 2019, 134(134): 36-52.
|
13. |
Son J, Park S J, Jung K H. Towards accurate segmentation of retinal vessels and the optic disc in fundoscopic images with generative adversarial networks. J Digit Imaging, 2019, 32(3): 499-512.
|
14. |
Staal J, Abramoff M D, Niemeijer M, et al. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging, 2004, 23(4): 501-509.
|
15. |
Hoover A D, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging, 2000, 19(3): 203-210.
|
16. |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets// Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014: 2672-2680.
|
17. |
蒋芸, 谭宁. 基于条件深度卷积生成对抗网络的视网膜血管分割. 自动化学报, 2021, 47(1): 136-147.
|
18. |
Sandler M, Howard A, Zhu M, et al. MobileNetV2: inverted residuals and linear bottlenecks// The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Utah: IEEE, 2018: 4510-4520.
|
19. |
Chollet F. Xception: Deep Learning with depthwise separable convolutions// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Puerto Rico: IEEE, 2017: 1800-1807.
|
20. |
Guo Jianbo, Li Yuxi, Lin Weiyao, et al. Network decoupling: from regular to depthwise separable convolutions. arXiv preprint arXiv, 2018: 1808.05517.
|
21. |
Huang Gao, Liu Zhuang, Maaten L V D, et al. Densely connected convolutional networks//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 2261-2269.
|
22. |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Identity mappings in deep residual networks// Proceedings of the European Conference on Computer Vision (ECCV). Amsterdam: Springer, 2016: 630-645.
|
23. |
Hu Jie, Shen Li, Albanie S, et al. Squeeze-and-excitation networks// The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Utah: IEEE, 2018: 7132-7141.
|
24. |
Zhou Qing, Zhou Zhiyong, Chen Chunmiao, et al. Grading of hepatocellular carcinoma using 3D SE-DenseNet in dynamic enhanced MR images. Comput Biol Med, 2019, 4(107): 47-57.
|
25. |
Yang Yibo, Zhong Zhisheng, Shen Tiancheng, et al. Convolutional neural networks with alternately updated clique// The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Utah: IEEE, 2018: 1-10.
|
26. |
Ghiasi G, Lin T Y, Le Q V. DropBlock: a regularization method for convolutional networks. arXiv preprint arXiv, 2018: 1810.12890.
|
27. |
Schlemper J, Oktay O, Chen L, et al. Attention-gated networks for improving ultrasound scan plane detection. arXiv preprint arXiv, 2018: 1804.05338.
|
28. |
Isola P, Zhu J-Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks// The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Puerto Rico: IEEE, 2017: 5967-5976.
|
29. |
Yang Hongju, Li Yao, Yan Xuefeng, et al. ContourGAN: image contour detection with generative adversarial network. Knowledge-Based Syst, 2019, 164(1): 21-28.
|
30. |
Maninis K K, Pont-Tuset J, Arbelaez P, et al. Deep retinal image understanding. arXiv preprint arXiv, 2016: 1609.01103.
|
31. |
Yan Zengqiang, Yang Xin, Cheng K T. Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans Biomed Eng, 2018, 65(9): 1912-1923.
|
32. |
Yang Tiejun, Wu Tingting, Li Lei, et al. SUD-GAN: Deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation. J Digit Imaging, 2020, 33: 946-957.
|