1. |
Ai Tao, Yang Zhenlu, Hou Hongyan, <italic>et al</italic>. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology, 2020: 200642.
|
2. |
Liang Tingbo. Handbook of COVID-19 prevention and treatment, 2020.
|
3. |
Kanne J P. Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist. Radiology, 2020, 295(1): 16-17.
|
4. |
Bullock J, Pham K H, Lam C S N, et al. Mapping the landscape of artificial intelligence applications against COVID-19. arXiv preprint arXiv, 2020: 2003.11336.
|
5. |
梁蒙蒙, 周涛, 张飞飞, 等. 卷积神经网络及其在医学图像分析中的应用研究. 生物医学工程学杂志, 2018, 35(6): 977-985.
|
6. |
韩坤, 潘海为, 张伟, 等. 基于多模态医学图像的 Alzheimer 病分类方法. 清华大学学报: 自然科学版, 2020, 60(8): 664-671.
|
7. |
李端, 张洪欣, 刘知青, 等. 基于深度残差卷积神经网络的心电信号心律不齐识别. 生物医学工程学杂志, 2019, 36(2): 189-198.
|
8. |
黄盛, 李菲菲, 陈虬. 基于改进深度残差网络的计算断层扫描图像分类算法. 光学学报, 2020, 40(3): 56-64.
|
9. |
刘一鸣, 侯智超, 李晓琴, 等. 基于卷积神经网络的肺结节检测方法. 生物医学工程学杂志, 2019, 36(6): 969-977, 985.
|
10. |
Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. arXiv preprint arXiv, 2020: 2003.10849.
|
11. |
Jin Shuo, Wang Bo, Xu Haibo, et al. AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks. medRxiv, 2020. DOI: 10.1101/2020.03.19.20039354.
|
12. |
Shi Feng, Wang Jun, Shi Jun, et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19[J]. IEEE Rev Biomed Eng, 2020. DOI: 10.1109/RBME.2020.2987975.
|
13. |
Bernheim A, Mei Xueyan, Huang Mingqian, <italic>et al</italic>. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology, 2020, 295(3): 200463.
|
14. |
孙冬梅, 陆剑锋, 张善卿. 一种改进 CLAHE 算法在医学试纸条图像增强中的应用. 中国生物医学工程学报, 2016, 35(4): 502-506.
|
15. |
张驰名, 王庆凤, 刘志勤, 等. 基于深度迁移学习的肺结节辅助诊断方法. 计算机工程, 2020, 46(1): 271-278.
|
16. |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述. 计算机学报, 2017, 40(6): 1229-1251.
|
17. |
LeCun Y, Bottou L, Bengio Y, <italic>et al</italic>. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
18. |
Lin Min, Chen Qiang, Yan Shuicheng. Network in network. arXiv preprint arXiv, 2013: 1312.4400.
|
19. |
Huang Gao, Liu Zhuang, van der Maaten L, et al. Densely connected convolutional networks// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708.
|
20. |
Huang Zhiwen, Zhu Xingxing, Ding Mingyue, <italic>et al</italic>. Medical image classification using a light-weighted hybrid neural network based on PCANet and DenseNet. IEEE Access, 2020, 8: 24697-24712.
|
21. |
Sifre L, Mallat S. Rigid-motion scattering for texture classification. arXiv preprint arXiv, 2014: 1403.1687.
|
22. |
刘媛媛, 张硕, 于海业, 等. 基于语义分割的复杂场景下的秸秆检测. 光学精密工程, 2020, 28(1): 200-211.
|
23. |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv, 2014: 1409.1556.
|
24. |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
|
25. |
Chowdhury M E H, Rahman T, Khandakar A, et al. Can AI help in screening viral and COVID-19 pneumonia. arXiv preprint arXiv, 2020: 2003.13145.
|
26. |
Bassi P R A S, Attux R. A deep convolutional neural network for COVID-19 detection using chest X-rays. arXiv preprint arXiv, 2020: 2005.01578.
|