1. |
Liang P, Sun H, Zhang X, et al. Effective and precise adenine base editing in mouse zygotes. Protein Cell, 2018, 9(9): 808-813.
|
2. |
Yu W, Mookherjee S, Chaitankar V, et al. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun, 2017, 8: 14716.
|
3. |
Song Jun, Yang Dongshan, Xu Jie, et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun, 2016, 7: 10548.
|
4. |
Yan S, Tu Z, Liu Z, et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in huntington's disease. Cell, 2018, 173(4): 989-1002, e13.
|
5. |
Yao X, Liu Z, Wang X, et al. Generation of knock-in cynomolgus monkey via CRISPR/Cas9 editing. Cell Res, 2018, 28(3): 379-382.
|
6. |
Cui Y, Niu Y, Zhou J, et al. Generation of a precise Oct4-hrGFP knockin cynomolgus monkey model via CRISPR/Cas9-assisted homologous recombination. Cell Res, 2018, 28(3): 383-386.
|
7. |
Kang J T, Cho B, Ryu J, et al. Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs. Reprod Biol Endocrinol, 2016, 14(1): 74.
|
8. |
Kang J T, Ryu J, Cho B, et al. Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting. Reproduction in Domestic Animals, 2016, 51(6): 970-978.
|
9. |
Holm I E, Alstrup A K, Luo Y. Genetically modified pig models for neurodegenerative disorders. J Pathol, 2016, 238(2): 267-287.
|
10. |
Song Chanwoo, Lee J, Lee S Y. Genome engineering and gene expression control for bacterial strain development. Biotechnol J, 2015, 10(1): 56-68.
|
11. |
Amitai G, Sorek R. CRISPR-Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol, 2016, 14(2): 67-76.
|
12. |
Yu H, Long W, Zhang X, et al. Generation of GHR-modified pigs as Laron syndrome models via a dual-sgRNAs/Cas9 system and somatic cell nuclear transfer. J Transl Med, 2018, 16(1): 41.
|
13. |
Zhou Xiaoqing, Xin Jige, Fan Nana, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cellular and Molecular Life Sciences, 2015, 72(6): 1175-1184.
|
14. |
Yang R, Lemaître V, Huang C, et al. Monoclonal cell line generation and Crispr/Cas9 manipulation via single-cell electroporation. Small, 2018, 14(12): e1702495.
|
15. |
Zhan T, Rindtorff N, Betge J, et al. CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol, 2019, 55: 106-119.
|
16. |
Shalem O, Sanjana N E, Hartenian E, et al. Genome-Scale CRISPR-Cas9 knockout screening in human cells. Science, 2014, 343(6166): 84-87.
|
17. |
Sanjana N E, Shalem O, Zhang Feng. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods, 2014, 11(8): 783-784.
|
18. |
Kato-Inui T, Takahashi G, Hsu S, et al. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Nucleic Acids Res, 2018, 46(9): 4677-4688.
|
19. |
Zheng C X, Wang S M, Bai Y H, et al. Lentiviral vectors and Adeno-associated virus vectors: useful tools for gene transfer in pain research. Anat Rec (Hoboken), 2018, 301(5): 825-836.
|
20. |
Lino C A, Harper J C, Carney J P, et al. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv, 2018, 25(1): 1234-1257.
|
21. |
Jiang D J, Xu C L, Tsang S H. Revolution in gene medicine therapy and genome surgery. Genes (Basel), 2018, 9(12): 575.
|
22. |
Liang Xiquan, Potter J, Kumar S, et al. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotechnol, 2017, 241: 136-146.
|
23. |
Zhang J H, Adikaram P, Pandey M, et al. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered, 2016, 7(3): 166-174.
|
24. |
Liu C, Zhang L, Liu H, et al. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release, 2017, 266: 17-26.
|
25. |
Kim H, Um E, Cho S R, et al. Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat Methods, 2011, 8(11): 941-943.
|
26. |
Ramakrishna S, Cho S W, Kim S, et al. Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations. Nat Commun, 2014, 5: 3378.
|
27. |
Ren C, Xu K, Liu Z, et al. Dual-reporter surrogate systems for efficient enrichment of genetically modified cells. Cell Mol Life Sci, 2015, 72(14): 2763-2772.
|
28. |
Li Y, Park A I, Mou H, et al. A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biol, 2015, 16(1): 111.
|
29. |
Grompe M. Fah knockout animals as models for therapeutic liver repopulation. Adv Exp Med Biol, 2017, 959: 215-230.
|
30. |
Nicolas C T, Hickey R D, Allen K L, et al. Hepatocyte spheroids as an alternative to single cells for transplantation after ex vivo gene therapy in mice and pig models. Surgery, 2018, 164(3): 473-481.
|