1. |
Grunau P D, Arneja S, Leith J M. A randomized clinical trial to assess the clinical effectiveness of a measured objective tensioning device in hamstring anterior cruciate ligament reconstruction. Am J Sports Med, 2016, 44(6): 1482-1486.
|
2. |
Carl I, Craig M, Daniel C, et al. Abnormal tibiofemoral contact stress and its association with altered kinematics following center-center ACL reconstruction: an in vitro study. American Journal of Sports Medicine, 2013, 41(4): 815.
|
3. |
Sakane M, Fox R J, Woo S L, et al. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res, 1997, 15(2): 285-293.
|
4. |
Branch T, Browne J E, Siebold R, et al. Paper 128: inconsistent manual techniques make qualitative and quantitative analyses of the pivot shift test difficult in both ACL-deficient and intact knees. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2011, 27(10): e152-e153.
|
5. |
Branch T P, Stinton S K, Siebold R, et al. Assessment of knee laxity using a robotic testing device: a comparison to the manual clinical knee examination. Knee Surg Sports Traumatol Arthrosc, 2017, 25(8): 2460-2467.
|
6. |
Rohman E M, Macalena J A. Anterior cruciate ligament assessment using arthrometry and stress imaging. Curr Rev Musculoskelet Med, 2016, 9(2): 130-138.
|
7. |
Hu Yan, Wei Jun, Lei Li, et al. Force-measuring robot for evaluation of anterior cruciate ligament reconstruction. Advanced Materials Research, 2012, 466-467: 1418-1423.
|
8. |
Rachmat H H, Janssen D, Verkerke G J, et al. In-situ mechanical behavior and slackness of the anterior cruciate ligament at multiple knee flexion angles. Med Eng Phys, 2016, 38(3): 209-215.
|
9. |
Kawaguchi S, Nagamune K, Nishizawa Y, et al. Challenge of normality evaluation by using micro-size tension measurement device in anterior cruciate ligament reconstruction//2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2012: 2605-2609.
|
10. |
Nishizawa Y, Hoshino Y, Nagamune K, et al. Comparison between intra- and extra-articular tension of the graft during fixation in anterior cruciate ligament reconstruction. Arthroscopy, 2017, 33(6): 1204-1210.
|
11. |
O'Neill B J, Byrne F J, Hirpara K M, et al. Anterior cruciate ligament graft tensioning. Is the maximal sustained one-handed pull technique reproducible?. BMC Res Notes, 2011, 4(1): 244.
|
12. |
Hoshino Y, Kuroda R, Nagamune K, et al. The effect of graft tensioning in anatomic 2-bundle ACL reconstruction on knee joint kinematics. Knee Surg Sports Traumatol Arthrosc, 2007, 15(5): 508-514.
|
13. |
Russell D F, Deakin A H, Fogg Q A, et al. Repeatability and accuracy of a non-invasive method of measuring internal and external rotation of the tibia. Knee Surg Sports Traumatol Arthrosc, 2014, 22(8): 1771-1777.
|
14. |
Mouton C, Theisen D, Pape D, et al. Static rotational knee laxity in anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc, 2012, 20(4): 652-662.
|
15. |
Lamberto G, Amin D, Solomon L B, et al. Personalised 3D knee compliance from clinically viable knee laxity measurements: a proof of concept ex vivo experiment. Med Eng Phys, 2019, 64: 80-85.
|
16. |
Pioletti D P, Rakotomanana L R. Nonlinear viscoelastic laws for soft biological tissues. Eur J Mech A-Solid, 2000, 19(5): 749-759.
|
17. |
Cui Z, Chen Z H, Qian D H, et al. A study of knee anterior cruciate ligament biomechanics with respect to energy and relaxation. Clinical Biomechanics, 2020, 80: 105159.
|
18. |
Duenwald S E, Vanderby R J, Lakes R S. Stress relaxation and recovery in tendon and ligament: experiment and modeling. Biorheology, 2010, 47(1): 1-14.
|
19. |
Gabriel M T, Wong E K, Woo S L, et al. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res, 2004, 22(1): 85-89.
|
20. |
de Jong W H, Carraway J W, Geertsma R E. In vivo and in vitro testing for the biological safety evaluation of biomaterials and medical devices. Biocompatibility and Performance of Medical Devices, 2012: 120-158.
|
21. |
Fleming B C, Beynnon B D. In vivo measurement of ligament/tendon strains and forces: a review. Ann Biomed Eng, 2004, 32(3): 318-328.
|
22. |
Fleming B C, Fadale P D, Hulstyn M J, et al. The effect of initial graft tension after anterior cruciate ligament reconstruction: a randomized clinical trial with 36-month follow-up. Am J Sports Med, 2013, 41(1): 25-34.
|
23. |
Schmitt-Sody M, Kirchhoff C, Luciani E, et al. Dynamic in vitro analysis of tractile forces of the anterior cruciate ligament (ACL) transplant using patellar and semitendinosus muscle tendon: a cadaver study. Arch Orthop Trauma Surg, 2015, 135(1): 29-39.
|
24. |
Chae S, Jung S W, Park H S. In vivo biomechanical measurement and haptic simulation of portal placement procedure in shoulder arthroscopic surgery. PLoS One, 2018, 13(3): e0193736.
|
25. |
Lubowitz J H, Appleby D. Cost-effectiveness analysis of the most common orthopaedic surgery procedures: knee arthroscopy and knee anterior cruciate ligament reconstruction. Arthroscopy, 2011, 27(10): 1317-1322.
|
26. |
Krych A J, Carey J L, Marx R G, et al. Does arthroscopic knee surgery work?. Arthroscopy, 2014, 30(5): 544-545.
|
27. |
Kim S J, Lee S K, Kim S H, et al. Does anterior laxity of the uninjured knee influence clinical outcomes of ACL reconstruction? J Bone Joint Surg Am, 2014, 96(7): 543-548.
|
28. |
Aljehani M, Madara K, Snyder-Mackler L, et al. The contralateral knee may not be a valid control for biomechanical outcomes after unilateral total knee arthroplasty. Gait Posture, 2019, 70: 179-184.
|
29. |
Magnussen R A, Reinke E K, Huston L J, et al. Effect of High-grade preoperative knee laxity on anterior cruciate ligament Reconstruction outcomes. Am J Sports Med, 2016, 44(12): 3077-3082.
|
30. |
van Luijk J, Bakker B, Rovers M M, et al. Systematic reviews of animal studies; missing link in translational research?. PLoS One, 2014, 9(3): e89981.
|
31. |
Deckers C, Stephan P, Wever K E, et al. The protective effect of anterior cruciate ligament Reconstruction on articular cartilage: a systematic review of animal studies. Osteoarthritis Cartilage, 2019, 27(2): 219-229.
|