1. |
Henley S J, Ward E M, Scott S, et al. Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer, 2020, 126(10): 2225-2249.
|
2. |
刘秀玲, 戚帅帅, 熊鹏, 等. 融合多尺度信息的肺结节自动检测算法. 生物医学工程学杂志, 2020, 37(3): 434-441.
|
3. |
王婧璇, 林岚, 赵思远, 等. 基于深度学习的肺结节计算机断层扫描影像检测与分类的研究进展. 生物医学工程学杂志, 2019, 36(4): 670-676.
|
4. |
Ziyad S R, Radha V, Vayyapuri T. Overview of computer aided detection and computer aided diagnosis systems for lung nodule detection in computed tomography. Curr Med Imaging Rev, 2020, 16(1): 16-26.
|
5. |
Xu Mingjie, Qi Shouliang, Yong Yue, et al. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Biomed Eng Online, 2019, 18(1): 2.
|
6. |
Xiao X, Zhao J, Qiang Y, et al. An automated segmentation method for lung parenchyma image sequences based on fractal geometry and convex hull algorithm. Applied Sciences, 2018, 8(5): 832.
|
7. |
Gopalakrishnan S, Kandaswamy A. Automatic delineation of lung parenchyma based on multilevel thresholding and gaussian mixture modelling. CMES, 2018, 114(2): 141-152.
|
8. |
Zhang S, Zhao Y, Bai P. Object Localization improved grabcut for lung parenchyma segmentation. Procedia Computer Science, 2018, 131: 1311-1317.
|
9. |
Kumar S P, Latte M V. Lung parenchyma segmentation: fully automated and accurate approach for thoracic CT scan images. IETE Journal of Research, 2018, 66(3): 370-383.
|
10. |
Peng Tao, Xu T C, Wang Yihuai, et al. Hybrid automatic lung segmentation on chest CT scans. IEEE Access, 2020, 8: 73293-73306.
|
11. |
张华海, 白培瑞, 郭子杨, 等. 一种融合表面波变换与脉冲耦合神经网络的三维肺实质分割算法. 生物医学工程学杂志, 2020, 37(4): 630-640.
|
12. |
Cheimariotis G A, Al-Mashat M, Haris K, et al. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT. Ann Nucl Med, 2018, 32(2): 94-104.
|
13. |
Chung H, Ko H, Jeon S J, et al. Automatic lung segmentation with Juxta-Pleural nodule identification using active contour model and bayesian approach. IEEE J Transl Eng Health Med, 2018, 6: 1800513.
|
14. |
Chen G, Xiang D, Zhang B, et al. Automatic pathological lung segmentation in low-dose CT image using eigenspace sparse shape composition. IEEE Trans Med Imaging, 2019, 38(7): 1736-1749.
|
15. |
Nithila E E, Kumar S S. Segmentation of lung from CT using various active contour models. Biomedical Signal Processing and Control, 2019, 47: 57-62.
|
16. |
Wang G, Liu X, Li C, et al. A Noise-Robust framework for automatic segmentation of COVID-19 pneumonia lesions from CT images. IEEE Trans Med Imaging, 2020, 39(8): 2653-2663.
|
17. |
Chen Ying, Wang Y, Hu Fei, et al. A lung dense deep convolution neural network for robust lung parenchyma segmentation. IEEE Access, 2020, 8: 93527-93547.
|
18. |
Zhang Q, Zhang M, Chen T, et al. Recent advances in convolutional neural network acceleration. Neurocomputing, 2019, 323: 37-51.
|
19. |
Liu X, Guo S, Yang B, et al. Automatic organ segmentation for CT scans based on super-pixel and convolutional neural networks. J Digit Imaging, 2018, 31(5): 748-760.
|
20. |
Liu C, Pang M. Extracting lungs from CT images via deep convolutional neural network based segmentation and two-pass contour refinement. J Digit Imaging, 2020, 33(6): 1465-1478.
|
21. |
Lateef F, Ruichek Y. Survey on semantic segmentation using deep learning techniques. Neurocomputing, 2019, 338: 321-348.
|
22. |
吴玉超, 林岚, 王婧璇. 基于卷积神经网络的语义分割在医学图像中的应用. 生物医学工程学杂志, 2020, 37(3): 533-540.
|
23. |
Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston: IEEE, 2015. DOI: 10.1109/CVPR.2015.7298965.
|
24. |
Geng L, Zhang S, Tong J, et al. Lung segmentation method with dilated convolution based on VGG-16 network. Comput Assist Surg (Abingdon), 2019, 24(2): 27-33.
|
25. |
Anthimopoulos M, Christodoulidis S, Ebner L, et al. Semantic segmentation of pathological lung tissue with dilated fully convolutional networks. IEEE J Biomed Health Inform, 2019, 23(2): 714-722.
|
26. |
Hofmanninger J, Prayer F, Pan J, et al. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. European Radiology Experimental, 2020, 4: 50.
|
27. |
Hu Qinhua, de F. Souza L F, Holanda G B, et al An effective approach for CT lung segmentation using mask region-based convolutional neural networks. Artificial Intelligence in Medicine, 2020, 103: 101792.
|
28. |
Han Tao, Nunes V X, de Freitas Souza L F, et al. Internet of medical things—based on deep learning techniques for segmentation of lung and stroke regions in CT scans. IEEE Access, 2020, 8: 71117-71135.
|
29. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer Assisted Intervention, 2015, arXiv: 1505.04597.
|
30. |
Skourt B A, Hassani A E, Majda A. Lung CT image segmentation using deep neural networks. ScienceDirect, 2018, 127: 109-113.
|
31. |
Park B, Park H, Lee S M, et al. Lung segmentation on HRCT and volumetric CT for diffuse interstitial lung disease using deep convolutional neural networks. J Digit Imaging, 2019, 32(6): 1019-1026.
|
32. |
Tan J, Jing L, Huo Y, et al. LGAN: lung segmentation in CT scans using generative adversarial network. Computerized Medical Imaging and Graphics, 2020, 87: 101817.
|
33. |
Khanna A, Londhe N D, Gupta S, et al. A deep residual U-Net convolutional neural network for automated lung segmentation in computed tomography images. Biocybern Biomed Eng, 2020, 40(3): 1314-1327.
|
34. |
Zhang Z, Wu C, Coleman S, et al. DENSE-inception U-net for medical image segmentation. Comput Methods Programs Biomed, 2020, 192: 105395.
|
35. |
Zhu J, Zhang J, Qiu B, et al. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques. Acta Oncol, 2019, 58(2): 257-264.
|
36. |
Park J, Yun J, Kim N, et al. Fully automated lung lobe segmentation in volumetric chest CT with 3D U-Net: validation with intra- and extra-datasets. J Digit Imaging, 2020, 33(1): 221-230.
|
37. |
Nemoto T, Futakami N, Yagi M, et al. Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi. J Radiat Res, 2020, 61(2): 257-264.
|
38. |
Dong X, Lei Y, Wang T, et al. Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Med Phys, 2019, 46(5): 2157-2168.
|
39. |
Ma J, Wang Y, An X, et al. Towards efficient COVID-19 CT annotation: a benchmark for lung and infection segmentation, arXiv preprint, 2020, arXiv: 2004.12537.
|