1. |
Ferlay J, Jacques I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015, 136(5): 359-386.
|
2. |
Aberle D R, Adams A, MBerg C D, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. New Engl J Med, 2011, 365(5): 395-409.
|
3. |
Setio A, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging, 2016, 35(5): 1160-1169.
|
4. |
Li C, Zhu G, Wu X, et al. False-positive reduction on lung nodules detection in chest radiographs by ensemble of convolutional neural networks. IEEE Access, 2018, 6: 16060-16067.
|
5. |
Zhao J, Zhang C, Li D, et al. Combining multi-scale feature fusion with multi-attribute grading, a CNN model for benign and malignant classification of pulmonary nodules. J Digit Imaging, 2020, 33(4): 869-878.
|
6. |
Zhang Y, Yi P, Zhou D, et al. CSANet: channel and spatial mixed attention CNN for pedestrian detection. IEEE Access, 2020, 8: 76243-76252.
|
7. |
Ding J, Li A, Hu Z, et al. Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks// 2017 Proceedings of the 20th Medical Image Computing and Computer Assisted Intervention. Quebec City: MICCAI, 2017: 559-567.
|
8. |
Zhu W, Liu C, Fan W. Deep lung: 3D deep convolutional nets for automated pulmonary nodule detection and classification// 2018 Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe: IEEE, 2018: 673-681.
|
9. |
Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection. IEEE Access, 2018, 13(7): 1525-1528.
|
10. |
Ozdemir O, Russell R L, Berlin A. A 3D probabilistic deep learning system for detection and diagnosis of lung cancer using low-dose CT scans. IEEE Trans Med Imaging, 2020, 39(5): 1419-1429.
|
11. |
Tajbakhsh N, Shin J Y, Gurudu S R. Convolutional neural networks for medical image analysis: full training or fine tuning. IEEE Trans Med Imaging, 2016, 35(5): 1299-1312.
|
12. |
Knight S B, Crosbie P A, Balata H. Progress and prospects of early detection in lung cancer. Open Biol, 2017, 67(6): 1256-1272.
|
13. |
Zheng S, Guo J, Cui X. Automatic pulmonary nodule detection in CT scans using convolutional neural networks based on maximum intensity projection. IEEE Trans Neur Net Lear, 2019, 39(3): 797-805.
|
14. |
Girshick R, Donahue J, Darrell T. Rich feature hierarchies for accurate object detection and semantic segmentation// 2014 Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
|
15. |
Cao H, Liu L, Song E. A two-stage convolutional neural networks for lung nodule detection. IEEE Trans Med Imaging, 2020, 24(7): 2006-2015.
|
16. |
Xu Q, Xiao Y, Wang D. CSA-MSO3DCNN: multiscale octave 3D CNN with channel and spatial attention for hyperspectral image classification. Remote Sensing, 2020, 12(1): 188-196.
|
17. |
Woo S, Park J, Lee J. CBAM: convolutional block attention module// 2018 Proceedings of the 15th European Conference on Computer Vision. Munich: IEEE, 2018: 3-19.
|
18. |
Fu J, Liu J, Tian H. Dual attention network for scene segmentation// 2019 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 1-18.
|
19. |
Tang H, Kim D, Xie X, et al. Automated pulmonary nodule detection in CT images using deep convolutional neural networks// 2018 Proceedings of the 15th International Symposium on Biomedical Imaging. Washington: IEEE, 2018: 123-134.
|
20. |
Prasoon A, Petersen K, Igel C. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network// 2013 Proceedings of the 16th Medical Image Computing and Computer-Assisted Intervention. Berlin: MICCAI, 2013: 246-253.
|
21. |
Torre L A, Bray F, Siegel R L. Global cancer statistics, 2012. CA Cancer J Clin, 2015, 65(2): 87-108.
|
22. |
Zuo W, Zhou F, Li Z. Multi-resolution CNN and knowledge transfer for candidate classification in lung nodule detection. IEEE Access, 2019: 32510-32521.
|
23. |
Tan M, Wu F, Yang B. Pulmonary nodule detection using hybrid two-stage 3D CNNs. Med Phys, 2020, 47(8): 3376-3388.
|
24. |
Hara K, Kataoka H, Satoh Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and imagenet? // 2018 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Lake Tahoe: IEEE, 2018: 18-22.
|
25. |
Dou Q, Chen H, Yu L. Multilevel contextual 3D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans Bio Med Eng, 2017, 64(7): 1558-1567.
|
26. |
Liao F, Liang M, Li Z. Evaluate the malignancy of pulmonary nodules using the 3D deep leaky noisy-or network. IEEE Trans Neur Net Lear, 2019, 30(11): 3484-3495.
|
27. |
Bray F, Ferlay J, Soerjomataram I. Global cancer statistics 2018: global estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
28. |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks// 2012 Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: IEEE, 2012: 1097-1105.
|
29. |
Shi Y, Li H, Zhang H, et al. Accurate and efficient LIF-Nets for 3D detection and recognition. IEEE Access, 2020, 8: 98562-98571.
|
30. |
Xie H, Yang D, Sun N, et al. Automated pulmonary nodule detection in CT images using deep convolutional neural networks. Pat Rec, 2018, 85(8): 109-119.
|
31. |
Hu J, Shen L, Albanie S. Squeeze-and-excitation networks. IEEE Trans Med Imaging, 2020, 42(8): 2011-2023.
|
32. |
Pezeshk A, Hamidian S, Petrick N. 3D convolutional neural networks for automatic detection of pulmonary nodules in chest CT. IEEE J Biomed Health, 2019, 23(5): 2080-2090.
|
33. |
Eun H, Kim D, Jung C. Single-view 2D CNNs with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection. Comput Meth Prog Bio, 2018, 165(14): 215-224.
|
34. |
Fang F, Li L, Zhu H. Combining faster R-CNN and model-driven clustering for elongated object detection. IEEE Trans Med Imaging, 2019, 16(4): 2052-2065.
|