1. |
Boeder N F, Weissner M, Blachutzik F, et al. Incidental finding of strut malapposition is a predictor of late and very late thrombosis in coronary bioresorbable scaffolds. J Clin Med, 2019, 8(5): 580-592.
|
2. |
张弘宇. 支架晚期贴壁不良的研究进展. 现代医学与健康研究, 2018, 2(11): 165.
|
3. |
Räber L, Mintz G S, Koskinas K C, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. an expert consensus document of the european association of percutaneous cardiovascular interventions. EuroIntervention, 2018, 14(6): 656-677.
|
4. |
Cook S, Wenaweser P, Togni M, et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation, 2007, 115(18): 2426-2434.
|
5. |
Finn A V, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis-strut coverage as a marker of endothelialization. Circulation, 2007, 115(18): 2435-2441.
|
6. |
Leone A M, Rebuzzi A G, Burzotta F, et al. Stent malapposition, strut coverage and atherothrombotic prolapse after percutaneous coronary interventions in ST-segment elevation myocardial infarction. J Cardiovasc Med (Hagerstown), 2019, 20(3): 122-130.
|
7. |
Giglioli C, Formentini C, Romano S M, et al. Vulnerable struts with CRE8, Biomatrix and Xience stents assessed with OCT and their correlation with clinical variables at 6-month follow-up: the CREBX-OCT study. Int J Cardiovasc Imaging, 2020, 36(2): 217-230.
|
8. |
Taniwaki M, Radu M D, Zaugg S, et al. Mechanisms of very late drug-eluting stent thrombosis assessed by optical coherence tomography. Circulation, 2016, 133(7): 650-660.
|
9. |
Mishra S. Structural and design evolution of bio-resorbable scaffolds: the journey so far. Curr Pharm Des, 2018, 24(4): 402-413.
|
10. |
Hytönen J P, Taavitsainen J, Tarvainen S, et al. Biodegradable coronary scaffolds: their future and clinical and technological challenges. Cardiovasc Res, 2018, 114(8): 1063-1072.
|
11. |
彭坤, 李婧, 王斯睿, 等. 可降解血管支架结构设计及优化的研究进展. 中国生物医学工程学报, 2019, 38(3): 367-374.
|
12. |
郭同彤, 万超杰. 一种梭型血管支架: 中国, CN208511271U. 2019-02-19.
|
13. |
张永顺, 张鸿坤, 赵渝, 等. 一种斜口结构状血管支架: 中国, CN210811780U. 2020-06-23.
|
14. |
潘宁, 赵渝, 张鸿坤, 等. 一种弯曲式血管支架: 中国, CN110368159A. 2020-07-14.
|
15. |
Xia Z, Feng J, Sasaki K. A general finite element analysis method for balloon expandable stents based on repeated unit cell (RUC) model. Finite Elements in Analysis and Design, 2007, 43(8): 649-658.
|
16. |
任庆帅. 血管支架扩张的有限元分析研究. 北京: 北京工业大学, 2016.
|
17. |
Brown J, O'Brien C C, Lopes A C, et al. Quantification of thrombus formation in malapposed coronary stents deployed in vitro through imaging analysis. J Biomech, 2018, 71(4): 296-301.
|
18. |
Naganuma T. Acute stent malapposition: Harmful or harmless?. International Journal of Cardiology, 2020, 299: 106-107.
|
19. |
Im E, Lee S Y, Hong S J, et al. Impact of late stent malapposition after drug-eluting stent implantation on long-term clinical outcomes. Atherosclerosis, 2019, 288: 118-123.
|
20. |
Lu Hong, Lee J, Jakl M, et al. Application and evaluation of highly automated software for comprehensive stent analysis in intravascular optical coherence tomography. Sci Rep, 2020, 10(1): 2150.
|
21. |
Tanigawa J, Barlis P, di Mario C. Intravascular optical coherence tomography: optimisation of image acquisition and quantitative assessment of stent strut apposition. Euro Intervention: Journal of Euro PCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 2007, 3(1): 128-136.
|
22. |
郑刚. 冠状动脉粥样硬化斑块特征与临床预后相关性研究的进展. 中华老年心脑血管病杂志, 2020, 22(3): 317-320.
|
23. |
Torii S, Jinnouchi H, Sakamoto A, et al. Vascular responses to coronary calcification following implantation of newer-generation drug-eluting stents in humans: impact on healing. Eur Heart J, 2020, 41(6): 786-796.
|
24. |
Khalifa A, Kubo T, Ino Y, et al. Optical coherence tomography comparison of percutaneous coronary intervention among plaque rupture, erosion, and calcified nodule in acute myocardial infarction. Circulation Journal, 2020, 84(6): 911-916.
|
25. |
崔新阳. 一种可降解锌合金血管支架支撑性能及疲劳力学的研究. 北京: 北京工业大学, 2019.
|
26. |
乔爱科, 柳思聪, 彭坤. 一种适形贴壁血管内支架: 中国, ZL201910559275.1. 2019-06-26.
|
27. |
李红霞, 张艺浩, 王希诚. 基于有限元模拟的支架扩张、血流动力学及支架疲劳分析. 医用生物力学, 2012, 27(2): 178-185.
|
28. |
王明, 马全超, 张文光, 等. 压握过程对球囊扩张支架性能的影响. 上海交通大学学报, 2012, 46(4): 646-650.
|
29. |
陈华, 赵仙先. 生物可降解镁合金支架研究现状. 介入放射学杂志, 2011, 20(1): 62-64.
|
30. |
Martin D, Boyle F. Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration. Int J Numer Method Biomed Eng, 2013, 29(11): 1161-1175.
|
31. |
张站柱, 乔爱科, 付文宇. 不同连接筋结构的支架治疗椎动脉狭窄的力学分析. 医用生物力学, 2013(1): 44-49.
|
32. |
李婧, 彭坤, 崔新阳, 等. 位姿对支架虚拟释放结果影响的数值模拟研究. 生物医学工程学杂志, 2018, 35(2): 214-218,228.
|
33. |
Li J L, Zheng F, Qiu X, et al. Finite element analyses for optimization design of biodegradable magnesium alloy stent. Materials Science & Engineering C Materials for Biological Applications, 2014, 42: 705-714.
|
34. |
Wu W, Gastaldi D, Yang K, et al. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Materials Science & Engineering B, 2011, 176(20): 1733-1740.
|
35. |
王小平, 焦延鹏, 崔福斋. 新型可降解金属血管支架的有限元力学分析. 机械设计与研究, 2007, 23(5): 59-61,69.
|