1. |
Trehearne A. Counting on big numbers. Int J Surg, 2009, 7(5): 413-415.
|
2. |
Mcintosh A M, Stewart R, John A, et al. Data science for mental health: a UK perspective on a global challenge. Lancet Psychiatry, 2016, 3(10): 993-998.
|
3. |
Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med, 2015, 12(3): e1001779.
|
4. |
Littlejohns T J, Holliday J, Gibson L M, et al. The UK biobank imaging enhancement of 100, 000 participants: rationale, data collection, management and future directions. Nat Commun, 2020, 11(1): 2624.
|
5. |
Miller K L, Alfaro-Almagro F, Bangerter N K, et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci, 2016, 19(11): 1523-1536.
|
6. |
de Winter C F, Bastiaanse L P, Hilgenkamp T I M, et al. Cardiovascular risk factors (diabetes, hypertension, hypercholesterolemia and metabolic syndrome) in older people with intellectual disability: results of the HA-ID study. Res Dev Disabil, 2012, 33(6): 1722-1731.
|
7. |
Sundaresan V, Griffanti L, Kindalova P, et al. Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference. Neuroimage, 2019, 185: 434-445.
|
8. |
Feng R, Rolls E T, Cheng W, et al. Hypertension is associated with reduced hippocampal connectivity and impaired memory. EBioMedicine, 2020, 61: 103082.
|
9. |
Parimisetty A, Dorsemans A C, Awada R, et al. Secret talk between adipose tissue and central nervous system via secreted factors-an emerging frontier in the neurodegenerative research. J Neuroinflammation, 2016, 13(1): 67.
|
10. |
Dekkers I A, Jansen P R, Lamb H J. Obesity, brain volume, and white matter microstructure at MRI: a cross-sectional UK Biobank study. Radiology, 2019, 291(3): 763-771.
|
11. |
Hamer M, Batty G D. Association of body mass index and waist-to-hip ratio with brain structure: UK Biobank study. Neurology, 2019, 92(6): e594-e600.
|
12. |
Cox S R, Lyall D M, Ritchie S J, et al. Associations between vascular risk factors and brain MRI indices in UK Biobank. Eur Heart J, 2019, 40(28): 2290-2300.
|
13. |
Veldsman M, Tai X Y, Nichols T, et al. Cerebrovascular risk factors impact frontoparietal network integrity and executive function in healthy ageing. Nat Commun, 2020, 11(1): 4340.
|
14. |
林岚, 张柏雯, 王婧璇, 等. 认知储备在大脑老化中的研究进展. 医疗卫生装备, 2017, 38(9): 93-98.
|
15. |
Hamer M, Sharma N, Batty G D. Association of objectively measured physical activity with brain structure: UK Biobank study. J Intern Med, 2018, 284(4): 439-443.
|
16. |
Taebi A, Kiesow H, Vogeley K, et al. Population variability in social brain morphology for social support, household size and friendship satisfaction. Soc Cogn Affect Neurosci, 2020, 15(6): 635-647.
|
17. |
Cheng W, Rolls E T, Ruan H, et al. Functional connectivities in the brain that mediate the association between depressive problems and sleep quality. JAMA Psychiatry, 2018, 75(10): 1052-1061.
|
18. |
林岚, 王婧璇, 付振荣, 等. 脑老化中脑年龄预测模型研究综述. 生物医学工程学杂志, 2019, 36(3): 493-498.
|
19. |
Dinsdale N K, Bluemke E, Smith S M, et al. Learning patterns of the ageing brain in MRI using deep convolutional networks. Neuroimage, 2021, 224: 117401.
|
20. |
Peng H, Gong W, Beckmann C F, et al. Accurate brain age prediction with lightweight deep neural networks. Med Image Anal, 2021, 68: 101871.
|
21. |
Cole J H. Multimodality neuroimaging brain-age in UK Biobank: relationship to biomedical, lifestyle, and cognitive factors. Neurobiol Aging, 2020, 92: 34-42.
|
22. |
Smith S M, Elliott L T, Alfaro-Almagro F, et al. Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations. Elife, 2020, 9: e52677.
|
23. |
林岚, 张格, 吴水才. 脑年龄估计差作为脑老化生物标志物的研究进展. 北京工业大学学报, 2021, 47(3): 303-310.
|
24. |
Kolbeinsson A, Filippi S, Panagakis Y, et al. Accelerated MRI-predicted brain ageing and its associations with cardiometabolic and brain disorders. Sci Rep, 2020, 10(1): 19940.
|
25. |
Smith S M, Vidaurre D, Alfaro-Almagro F, et al. Estimation of brain age delta from brain imaging. Neuroimage, 2019, 200: 528-539.
|
26. |
Feng X, Guo J, Sigmon H C, et al. Brain regions vulnerable and resistant to aging without Alzheimer's disease. PLoS One, 2020, 15(7): e0234255.
|
27. |
Estebsari F, Dastoorpoor M, Khalifehkandi Z R, et al. The concept of successful aging: a review article. Curr Aging Sci, 2020, 13(1): 4-10.
|
28. |
Tseng W Y I, Hsu Y C, Chen C L, et al. Microstructural differences in white matter tracts across middle to late adulthood: a diffusion MRI study on 7 167 UK Biobank participants. Neurobiol Aging, 2021, 98: 160-172.
|
29. |
Buchanan C R, Bastin M E, Ritchie S J, et al. The effect of network thresholding and weighting on structural brain networks in the UK Biobank. Neuroimage, 2020, 211: 116443.
|
30. |
Cox S R, Ritchie S J, Tucker-Drob E M, et al. Ageing and brain white matter structure in 3, 513 UK Biobank participants. Nat Commun, 2016, 7: 13629.
|
31. |
Tian Q, Pilling L C, Atkins J L, et al. The relationship of parental longevity with the aging brain-results from UK Biobank. Geroscience, 2020, 42(5): 1377-1385.
|
32. |
Nobis L, Manohar S G, Smith S M, et al. Hippocampal volume across age: nomograms derived from over 19, 700 people in UK Biobank. Neuroimage Clin, 2019, 23: 101904.
|
33. |
Foo H, Thalamuthu A, Jiang J, et al. Associations between Alzheimer's disease polygenic risk scores and hippocampal subfield volumes in 17, 161 UK Biobank participants. Neurobiol Aging, 2021, 98: 108-115.
|
34. |
Newbury J B, Arseneault L, Beevers S, et al. Association of air pollution exposure with psychotic experiences during adolescence. JAMA Psychiatry, 2019, 76(6): 614-623.
|
35. |
Gale S D, Erickson L D, Kunzelman J E, et al. Association between exposure to air pollution and prefrontal cortical volume in adults: a cross-sectional study from the UK Biobank. Environ Res, 2020, 185: 109365.
|
36. |
Hedges D W, Erickson L D, Kunzelman J, et al. Association between exposure to air pollution and hippocampal volume in adults in the UK Biobank. Neurotoxicology, 2019, 74: 108-120.
|
37. |
Elliott L T, Sharp K, Alfaro-Almagro F, et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature, 2018, 562(7726): 210-216.
|
38. |
Satizabal C L, Adams H, Hibar D P, et al. Genetic architecture of subcortical brain structures in 38, 851 individuals. Nat Genet, 2019, 51(11): 1624-1636.
|
39. |
Cox S R, Ritchie S J, Fawns-Ritchie C, et al. Structural brain imaging correlates of general intelligence in UK Biobank. Intelligence, 2019, 76: 101376.
|
40. |
Ritchie S J, Cox S R, Shen X, et al. Sex differences in the adult human brain: evidence from 5 216 UK Biobank participants. Cereb Cortex, 2018, 28(8): 2959-2975.
|
41. |
康文杰, 林岚, 孙珅, 等. 生成对抗网络及其在神经影像应用中的研究进展. 医疗卫生装备, 2020, 41(9): 87-93, 108.
|
42. |
吴玉超, 林岚, 王婧璇. 基于卷积神经网络的语义分割在医学图像中的应用. 生物医学工程学杂志, 2020, 37(3): 533-540.
|
43. |
田苗, 林岚, 张柏雯, 等. 深度学习在神经影像中的应用研究. 中国医疗设备, 2016, 31(12): 4-9.
|
44. |
Alfaro-Almagro F, Mccarthy P, Afyouni S, et al. Confound modelling in UK Biobank brain imaging. Neuroimage, 2021, 224: 117002.
|