1. |
Yao D, Zhang Y, Liu T, et al. Bacomics: a comprehensive cross area originating in the studies of various brain-apparatus conversations. Cogn Neurodyn, 2020, 14(4): 425-442.
|
2. |
Fan L, Xiang B, Xiong J, et al. Use of viruses for interrogating viscera-specific projections in central nervous system. J Neurosci Methods, 2020, 341: 108757.
|
3. |
Li H, Cao W, Zhang X, et al. BOLD-fMRI reveals the association between renal oxygenation and functional connectivity in the aging brain. Neuroimage, 2019, 186: 510-517.
|
4. |
Mather M, Thayer J. How heart rate variability affects emotion regulation brain networks. Curr Opin Behav Sci, 2018, 19: 98-104.
|
5. |
Liang S, Wu X, Hu X, et al. Recognizing depression from the microbiota-gut-brain axis. Int J Mol Sci, 2018, 19(6): 1592.
|
6. |
Gao D, Long S, Yang H, et al. SWS Brain-wave music may improve the quality of sleep: an EEG study. Front Neurosci, 2020, 14: 67.
|
7. |
Guo S, Lu J, Wang Y, et al. Sad music modulates pain perception: an EEG study. J Pain Res, 2020, 13: 2003-2012.
|
8. |
Miao Y, Yin E, Allison B Z, et al. An ERP-based BCI with peripheral stimuli: validation with ALS patients. Cogn Neurodyn, 2020, 14(1): 21-33.
|
9. |
Jin J, Miao Y, Daly I, et al. Correlation-based channel selection and regularized feature optimization for MI-based BCI. Neural Netw, 2019, 118: 262-270.
|
10. |
Jiao Y, Zhang Y, Wang Y, et al. A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain-computer interface. Int J Neural Syst, 2018, 28(4): 1750039.
|
11. |
Zhang Y, Yin E, Li F, et al. Two-stage frequency recognition method based on correlated component analysis for SSVEP-based BCI. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(7): 1314-1323.
|
12. |
Jin J, Zhang H, Daly I, et al. An improved P300 pattern in BCI to catch user's attention. J Neural Eng, 2017, 14(3): 036001.
|
13. |
Ma T, Li F, Li P, et al. An adaptive calibration framework for mVEP-based brain-computer interface. Comput Math Methods Med, 2018, 2018: 9476432.
|
14. |
Pan J, Li Y, Gu Z, et al. A comparison study of two P300 speller paradigms for brain-computer interface. Cogn Neurodyn, 2013, 7(6): 523-529.
|
15. |
Zhao Z, Yao S, Li K, et al. Real-time functional connectivity-informed neurofeedback of amygdala-frontal pathways reduces anxiety. Psychother Psychosom, 2019, 88(1): 5-15.
|
16. |
Gan X, Yao Y, Liu H, et al. Action Real-time strategy gaming experience related to increased attentional resources: an attentional blink study. Front Hum Neurosci, 2020, 14: 101.
|
17. |
Qiu N, Ma W, Fan X, et al. Rapid improvement in visual selective attention related to action video gaming experience. Front Hum Neurosci, 2018, 12: 47.
|
18. |
Vázquez F L, Otero P, García-Casal J A, et al. Efficacy of video game-based interventions for active aging. A systematic literature review and meta-analysis. PLoS One, 2018, 13(12): e0208192.
|
19. |
Gong D, He H, Liu D, et al. Enhanced functional connectivity and increased gray matter volume of insula related to action video game playing. Sci Rep, 2015, 5: 9763.
|
20. |
Bewernick B H, Hurlemann R, Matusch A, et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry, 2010, 67(2): 110-116.
|
21. |
Si Y, Wu X, Li F, et al. Different decision-making responses occupy different brain networks for information processing: a study based on EEG and TMS. Cereb Cortex, 2019, 29(10): 4119-4129.
|
22. |
Polanía R, Nitsche M, Ruff C C. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci, 2018, 21(2): 174-187.
|
23. |
Huang H, Jiang Y, Xia M, et al. Increased resting-state global functional connectivity density of default mode network in schizophrenia subjects treated with electroconvulsive therapy. Schizophr Res, 2018, 197: 192-199.
|
24. |
Jiang Y, Xia M, Li X, et al. Insular changes induced by electroconvulsive therapy response to symptom improvements in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 89: 254-262.
|
25. |
Meyers E C, Solorzano B R, James J, et al. Vagus nerve stimulation enhances stable plasticity and generalization of stroke recovery. Stroke, 2018, 49(3): 710-717.
|
26. |
Meng H J, Cao N, Lin Y T, et al. Motor learning enhanced by combined motor imagery and noninvasive brain stimulation is associated with reduced short-interval intracortical inhibition. Brain Behav, 2019, 9(4): e01252.
|
27. |
Ono Y, Wada K, Kurata M, et al. Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback. Neuropsychologia, 2018, 114: 134-142.
|
28. |
Andersen R A, Kellis S, Klaes C, et al. Toward more versatile and intuitive cortical brain-machine interfaces. Curr Biol, 2014, 24(18): R885-R897.
|
29. |
Raspopovic S, Capogrosso M, Petrini F M, et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med, 2014, 6(222): 222ra19.
|
30. |
Bouton C E, Shaikhouni A, Annetta N V, et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature, 2016, 533(762): 247.
|
31. |
Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature, 2019, 575(7784): 607-617.
|
32. |
Ullman S. Using neuroscience to develop artificial intelligence. Science, 2019, 363(6428): 692-693.
|
33. |
Qin Y, Zhang N, Chen Y, et al. Rhythmic network modulation to thalamocortical couplings in epilepsy. Int J Neural Syst, 2020, 30(11): 2050014.
|
34. |
Li Fali, Chen Bei, Li He, et al. The time-varying networks in p300: a task-evoked EEG study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(7): 725-733.
|
35. |
Moses D A, Leonard M K, Makin J G, et al. Real-time decoding of question-and-answer speech dialogue using human cortical activity. Nat Commun, 2019, 10(1): 3096.
|