1. |
程志强, 马金秋. 中国人口老龄化的演变与应对之策. 学术交流, 2018(12): 101-109.
|
2. |
董碧蓉. 老年衰弱综合征的研究进展. 中华保健医学杂志, 2014, 6(16): 417-420.
|
3. |
Clegg A, Young J, Iliffe S, et al. Frailty in elderly people. Lancet, 2013, 381(9868): 752-762.
|
4. |
Yoshida T, Tabony A M, Galvez S, et al. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia. Int J Biochem Cell B, 2013, 45(10): 2322-2332.
|
5. |
Hwang H, Bowen B P, Lefort N, et al. Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes. Diabetes, 2010, 59(1): 33-42.
|
6. |
Morley J E, Malmstrom T K, Rodriguez-manas L, et al. Frailty, sarcopenia and diabetes. J Am Med Dir Assoc, 2014, 15(12): 853-859.
|
7. |
Chen L K, Chen Y M, lin M H, et al. Care of elderly patients with diabetes mellitus: a focus on frailty. Ageing Res Rev, 2010, 9 Suppl 1: S18-22.
|
8. |
田鹏, 杨宁, 郝秋奎, 等. 中国老年衰弱患病率的系统评价. 中国循证医学杂志, 2019, 19(6): 656-664.
|
9. |
Garcia-Esquinas E, Graciani A, Guallar-castillon P, et al. Diabetes and risk of frailty and its potential mechanisms: a prospective cohort study of older adults. J Am Med Dir Assoc, 2015, 16(9): 748-754.
|
10. |
Jackson M A, Jeffery I B, Beaumont M, et al. Signatures of early frailty in the gut microbiota. Genome Med, 2016, 8(1): 8.
|
11. |
van Tongeren S P, Slaets J P, Harmsen H J, et al. Fecal microbiota composition and frailty. Appl Environ Microbiol, 2005, 71(10): 6438-6442.
|
12. |
Biagi E, Franceschi C, Rampelli S, et al. Gut microbiota and extreme longevity. Curr Biol, 2016, 26(11): 1480-1485.
|
13. |
Ticinesi A, Nouvenne A, Cerundolo N, et al. Gut microbiota, muscle mass and function in aging: A focus on physical frailty and sarcopenia. Nutrients, 2019, 11(7): 1633.
|
14. |
Casati M, Ferri E, Azzolino D, et al. Gut microbiota and physical frailty through the mediation of sarcopenia. Exp Gerontol, 2019, 124: 110639.
|
15. |
Leduc-Gaudet J P, Picard M, Pelletier F S, et al. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget, 2015, 6(20): 17923-17937.
|
16. |
Pols T W H, Noriega L G, Nomura M, et al. The bile acid membrane receptor TGR5: a valuable metabolic target. Digest Dis, 2011, 29(1): 37-44.
|
17. |
Yatsunenko T, Rey F E, Manary M J, et al. Human gut microbiome viewed across age and geography. Nature, 2012, 486(7402): 222-227.
|
18. |
Buigues C, Fernandez-Garrido J, Pruimboom L, et al. Effect of a prebiotic formulation on frailty syndrome: A randomized, double-blind clinical trial. Int J Mol Sci, 2016, 17(6): 932.
|
19. |
Richard M L, Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol, 2019, 16(6): 331-345.
|
20. |
Kultima J R, Coelho L P, Forslund K, et al. MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics, 2016, 32(16): 2520-2523.
|
21. |
Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res, 2010, 38(12): e132.
|
22. |
Fu Limin, Niu Beifang, Zhu Zhengwei, et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28(23): 3150-3152.
|
23. |
Segata N, Waldron L, Ballarini A, et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods, 2012, 9(8): 811-814.
|
24. |
Sunagawa S, Mende D R, Zeller G, et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods, 2013, 10(12): 1196-1199.
|
25. |
Luo Weijun, Friedman M S, Shedden K, et al. GAGE: generally applicable gene set enrichment for pathway analysis. Bmc Bioinformatics, 2009, 10(1): 161.
|
26. |
Ticinesi A, Nouvenne A, Tana C, et al. The impact of intestinal microbiota on bio-medical research: definitions, techniques and physiology of a "new frontier". Acta Biomed, 2018, 89(9-S): 52-59.
|
27. |
Dejong E N, Surette M G, Bowdish D M E. The gut microbiota and unhealthy aging: Disentangling cause from consequence. Cell Host Microbe, 2020, 28(2): 180-189.
|
28. |
Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol, 2018, 15(9): 505-522.
|
29. |
Wu Hao, Tremaroli V, Schmidt C, et al. The gut microbiota in prediabetes and diabetes: A population-based cross-sectional study. Cell Metab, 2020, 32(3): 379-390.
|
30. |
Chow J, Tang H, Mazmanian S K. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol, 2011, 23(4): 473-480.
|
31. |
Gomez-Arango L F, Barrett H L, Wilkinson S A, et al. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes, 2018, 9(3): 189-201.
|
32. |
Cani P D, Possemiers S, Wiele T V, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 2009, 58(8): 1091-1103.
|
33. |
Ju Tingting, Kong J Y, Stothard P, et al. Defining the role of Parasutterella, a previously uncharacterized member of the core gut microbiota. ISME J, 2019, 13(6): 1520-1534.
|
34. |
Wang Qi, Wang Yunzhang, Lehto K, et al. Genetically-predicted life-long lowering of low-density lipoprotein cholesterol is associated with decreased frailty: A Mendelian randomization study in UK biobank. EBioMedicine, 2019, 45: 487-494.
|
35. |
Hemsworth G R, Thompson A J, Stepper J, et al. Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut. Open Biol, 2016, 6(7): 160142.
|
36. |
Yang Chao, Mogno I, Contijoch E J, et al. Fecal IgA levels are determined by strain-level differences in Bacteroides ovatus and are modifiable by gut microbiota manipulation. Cell Host Microbe, 2020, 27(3): 467-475 e6.
|
37. |
Tokuhara D, Yuki Y, Nochi T, et al. Secretory IgA-mediated protection against V. cholerae and heat-labile enterotoxin-producing enterotoxigenic Escherichia coli by rice-based vaccine. Proc Natl Acad Sci U S A, 2010, 107(19): 8794-8799.
|
38. |
Yoon S, Yu J, McDowell A, et al. Bile salt hydrolase-mediated inhibitory effect of Bacteroides ovatus on growth of Clostridium difficile. J Microbiol, 2017, 55(11): 892-899.
|
39. |
Koh A, Molinaro A, Stahlman M, et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell, 2018, 175(4): 947-961.
|
40. |
Iwakiri D, Zhou Li, Samanta M, et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med, 2009, 206(10): 2091-2099.
|
41. |
Lopez-Otin C, Galluzzi L, Freije J M P, et al. Metabolic control of longevity. Cell, 2016, 166(4): 802-821.
|
42. |
Liu Hu, Wang Ji, He Ting, et al. Butyrate: A double-edged sword for health?. Adv Nutr, 2018, 9(1): 21-29.
|
43. |
Dent E, Martin F C, Bergman H, et al. Management of frailty: opportunities, challenges, and future directions. Lancet, 2019, 394(10206): 1376-1386.
|
44. |
Haran J, Bucci V, Dutta P, et al. The nursing home elder microbiome stability and associations with age, frailty, nutrition and physical location. J Med Microbiol, 2018, 67(1): 40-51.
|
45. |
Gaulke C A, Sharpton T J. The influence of ethnicity and geography on human gut microbiome composition. Nat Med, 2018, 24(10): 1495-1496.
|