1. |
伏云发, 郭衍龙, 张夏冰, 等. 脑机接口: 变革性的人机交互. 北京: 国防工业出版社, 2020.
|
2. |
Graimann B, Allison B, Pfurtscheller G. Brain-computer interfaces: Revolutionizing human-computer interaction. Berlin: Springer Publishing Company, 2013.
|
3. |
张旭, 袁芳, 姚兆林. 脑机接口: 电路与系统. 北京: 机械工业出版社, 2020.
|
4. |
Zjajo A. Brain-machine interface: Circuits and systems. Berlin: Springer Publishing Company, 2016.
|
5. |
伏云发, 龚安民, 陈超, 等. 面向实用的脑-机接口: 缩小研究与实际应用之间的差距. 北京: 电子工业出版社, 2021.
|
6. |
Allison B Z, Dunne S, Leeb R, et al. Towards practical Brain-Computer Interfaces: Bridging the gap from research to real-world applications. Berlin: Springer Publishing Company, 2012.
|
7. |
Chavarriaga R, Fried-Oken M, Kleih S, et al. Heading for new shores! Overcoming pitfalls in BCI design. Brain Computer Interfaces, 2017, 4(1-2): 60-73.
|
8. |
Zickler C, Riccio A, Leotta F, et al. A brain-computer interface as input channel for a standard assistive technology software. Clin EEG Neurosci, 2011, 42(4): 236-244.
|
9. |
Riccio A, Pichiorri F, Schettini F, et al. Interfacing brain with computer to improve communication and rehabilitation after brain damage. Prog Brain Res, 2016, 228: 357-387.
|
10. |
Kübler A, Holz E M, Angela R, et al. The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications. PLoS One, 2014, 9(12): e112392.
|
11. |
许为, 葛列众. 人因学发展的新取向. 心理科学进展, 2018, 26(9): 1521-1534.
|
12. |
蒋祖华. 人因工程. 北京: 科学出版社, 2011.
|
13. |
Giulia L, Alessia P, Luca S, et al. Developing brain-computer interfaces from a user-centered perspective: Assessing the needs of persons with amyotrophic lateral sclerosis, caregivers, and professionals. Appl Ergon, 2015, 50: 139-146.
|
14. |
Kübler A, Nijboer F, Kleih S. Hearing the needs of clinical users. Handb Clin Neurol, 2020, 168: 353-368.
|
15. |
Kübler A, Zickler C, Holz E, et al. Applying the user-centred design to evaluation of brain-computer interface controlled applications. Biomed Eng, 2013, 58(15): 3234-3234.
|
16. |
Abiri R, Borhani S, Kilmarx J, et al. A usability study of low-cost wireless brain-computer interface for cursor control using online linear model. IEEE Trans Hum Mach Syst, 2020, 50(4): 287-297.
|
17. |
Kübler A. The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome. Neuroethics, 2020, 13(3): 1-18.
|
18. |
Martin S, Armstrong E, Thomson E, et al. A qualitative study adopting a user-centered approach to design and validate a brain computer interface for cognitive rehabilitation for people with brain injury. Assist Technol, 2018, 30(5): 233-241.
|
19. |
Branco M P, Pels E G M, Sars R H, et al. Brain-computer interfaces for communication: Preferences of individuals with locked-in syndrome. Neurorehab Neural Re, 2021, 35(3): 267-279.
|
20. |
Wolpaw J R, Millán J D R, Ramsey N F. Brain-computer interfaces: Definitions and principles. Handb Clin Neurol, 2020, 168: 15-23.
|
21. |
伏云发, 杨秋红, 徐宝磊, 等. 脑-机接口原理与实践. 北京: 国防工业出版社, 2017.
|
22. |
Wolpaw J R, Wolpaw E W. Brain-computer interfaces: Principles and practice. Oxford: Oxford University Press, 2012.
|
23. |
Benjamin B, Michael T, Carmen V, et al. The Berlin brain-computer interface: Non-medical uses of BCI technology. Front Neurosci, 2010, 4: 198.
|
24. |
高久伟, 卢乾波, 郑璐, 等. 柔性生物电传感技术. 材料导报, 2020, 34(1): 1095-1106.
|
25. |
Kimura M, Nakatani S, Nishida S I, et al. 3D printable dry EEG electrodes with coiled-spring prongs. Sensors, 2020, 20(17): 4733.
|
26. |
Casson A J. Wearable EEG and beyond. Biomed Eng Lett, 2019, 1: 53-71.
|
27. |
刘铁军, 张锐, 徐鹏. 基于运动想象的脑机接口关键技术研究. 中国生物医学工程学报, 2014, 33(6): 644-651.
|
28. |
Kübler A, Blankertz B, Müller K R, et al. A model of BCI control// Proceedings of the 5th International Brain-Computer Interface Conference 2011. Graz: Verlag der Technischen Universität Graz, 2011: 100-103.
|
29. |
许敏鹏, 程秀敏, 明东. 不同视觉注意状态调制稳态视觉诱发电位特征的可分性研究. 生物医学工程学杂志, 2019, 36(5): 705-710.
|
30. |
Allison B, Luth T, Valbuena D, et al. BCI demographics: How many (and what kinds of) people can use an SSVEP BCI?. IEEE Trans Neural Syst Rehabil Eng, 2010, 18(2): 107-116.
|
31. |
Guger C, Daban S, Sellers E, et al. How many people are able to control a P300-based brain-computer interface (BCI)?. Neurosci Lett, 2009, 462: 94-98.
|
32. |
Brunner P, Joshi S, Briskin S, et al. Does the ‘P300’ speller depend on eye gaze?. J Neural Eng, 2010, 7(5): 056013.
|
33. |
Treder M S, Blankertz B. (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behav Brain Funct, 2010, 6(1): 28.
|
34. |
Alonso-Valerdi L M, Arreola-Villarruel M A, Argüello-García J. Brain-computer interfaces: Conceptualization, redesign challenges and social impact. Revista Mexicana de Ingenieria Biomedica, 2020, 40(3): 1-18.
|
35. |
Grübler G, Hildt E. Brain-computer interfaces in their ethical, social and cultural contexts. Berlin: Springer Publishing Company, 2014.
|
36. |
Vidaurre C, Kawanabe M, et al. Toward unsupervised adaptation of LDA for brain-computer interfaces. IEEE Trans Biomed Eng, 2011, 58(3): 587-597.
|
37. |
Faller J, Vidaurre C, Solis-Escalante T, et al. Autocalibration and recurrent adaptation: Towards a plug and play online ERD-BCI. IEEE Trans Neural Syst Rehabil EngI, 2012, 20(3): 313-319.
|
38. |
Josef F, Reinhold S, Ursula C, et al. A Co-adaptive brain-computer interface for end users with severe motor impairment. PLoS One, 2014, 9(7): e101168.
|
39. |
Samek W, Meinecke F C, Müller K R. Transferring subspaces between subjects in brain-computer interfacing. IEEE Trans Biomed Eng, 2013, 60(8): 2289-2298.
|
40. |
Perdikis S, Leeb R, Millan J D R. Subject-oriented training for motor imagery brain-computer interfaces// 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Chicago: IEEE, 2014: 1259-1262.
|
41. |
Kobler R J, Scherer R. Restricted Boltzmann machines in sensory motor rhythm brain-computer interfacing: A study on inter-subject transfer and co-adaptation// 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Budapest: IEEE, 2016: 469-474.
|
42. |
杨晨. 面向应用的稳态视觉诱发电位脑-机接口算法及系统研究. 北京: 清华大学, 2018.
|
43. |
Galán F, Nuttin M, Lew E, et al. A brain-actuated wheelchair: Asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin Neurophysiol, 2008, 119(9): 2159-2169.
|
44. |
Millan J, Renkens F, Mourino J, et al. Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng, 2004, 51(6): 1026-1033.
|
45. |
Müller K R, Blankertz B. Toward noninvasive brain–computer interfaces. IEEE Signal Process Mag, 2006, 23(5): 128.
|
46. |
Tonin L, Leeb R, Tavella M, et al. The role of shared-control in BCI-based telepresence// 2010 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Istanbul: IEEE, 2010: 1462-1466.
|
47. |
Williamson J, Murray-Smith R, Blankertz B, et al. Designing for uncertain, asymmetric control: Interaction design for brain–computer interfaces. Int J Hum-Comput St, 2009, 67(10): 827-841.
|
48. |
Wills S A, Mackay D J C. Dasher-an efficient writing system for brain-computer interfaces?. IEEE Trans Neural Syst Rehabil EngI, 2006, 14(2): 244-246.
|
49. |
Garipelli G, Galán F, Chavarriaga R, et al. The use of brain-computer interfacing in ambient intelligence. Constructing Ambient Intelligence, 2008, 11: 268-285.
|
50. |
Kanemura A, Morales Y, Kawanabe M, et al. A waypoint-based framework in brain-controlled smart home environments: Brain interfaces, domotics, and robotics integration// 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Tokyo: IEEE, 2013: 865-870.
|
51. |
Liu Yaru, Liu Yadong, Tang Jingsheng, et al. A self-paced BCI prototype system based on the incorporation of an intelligent environment-understanding approach for rehabilitation hospital environmental control. Comput Biol Med, 2020, 118: 103618.
|
52. |
刘玉仁, 董震曜. 快速原型法在软件设计中的应用. 光电对抗与无源干扰, 2002(4): 6-9.
|
53. |
Zelkowitz M V. A case study in rapid prototyping. Software Pract Exper, 1980, 10(12): 1037-1042.
|
54. |
Zickler C, Donna V D, Kaiser V, et al. Brain computer interaction applications for people with disabilities: Defining user needs and user requirements// 10th European Conference for the Advancement of Assistive Technology. Florence: Association for the Advancement of Assistive Technology in Europe, 2009: 185-189.
|
55. |
蒋梦蝶. 膝骨关节炎患者移动辅具使用现状及影响因素分析. 开封: 河南大学, 2020.
|
56. |
Colucci M, Tofani M, Trioschi D, et al. Reliability and validity of the Italian version of Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 (QUEST-IT 2.0) with users of mobility assistive device. Disabil Rehabil Assist Technol, 2019, 25: 1-4.
|
57. |
傅嘉豪, 焦学军, 曹勇, 等. 基于 EEG 的多因素认知任务脑力负荷研究. 航天医学与医学工程, 2020, 33(1): 35-44.
|
58. |
Hart S G, Staveland L E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Adv Psychol, 1988, 52: 139-183.
|
59. |
Leeb R, Sagha H, Chavarriaga R, et al. A hybrid brain-computer interface based on the fusion of electroence phalographic and electromyographic activities. J Neural Eng, 2011, 8(2): 025011.
|
60. |
Chai Xiaoke, Zhang Zhimin, Guan Kai, et al. A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis. Biomed Signal Process Control, 2020, 56(2): 101687.
|
61. |
李红卫, 陈小刚. 基于高级控制策略的脑-机接口控制机械臂系统. 北京生物医学工程, 2019, 38(1): 36-41.
|
62. |
杨帮华, 刘丽, 陆文宇, 等. 基于虚拟现实技术的脑机交互反馈系统设计. 北京生物医学工程, 2011, 30(4): 401-404.
|
63. |
瞿军. 基于生物电信号的人机交互技术及其在虚拟现实中的应用研究. 广州: 华南理工大学, 2019.
|
64. |
蒲贤洁, 刘铁军, 吴强, 等. 基于脑电信号的神经反馈系统研究. 生物医学工程学杂志, 2014, 31(4): 894-898.
|
65. |
郑南宁. 受脑认知和神经科学启发的人工智能. 网信军民融合, 2017, 3: 17-19.
|
66. |
王行愚, 金晶, 张宇, 等. 脑控: 基于脑-机接口的人机融合控制. 自动化学报, 2013, 39(3): 208-221.
|