1. |
Spiker W R, Goz V, Brodke D S. Lumbar interbody fusions for degenerative spondylolisthesis: review of techniques, indications, and outcomes. Global Spine J, 2019, 9(1): 77-84.
|
2. |
韦江波, 宋跃明, 刘立岷, 等. 腰椎椎间融合坚强固定与弹性固定生物力学效果的三维有限元分析. 生物医学工程学杂志, 2015, 32(2): 316-320.
|
3. |
张振军, 廖振华, 孙艺萄, 等. 腰椎椎间融合器及其在椎间融合术中的生物力学研究进展. 医用生物力学, 2018, 33(5): 465-470.
|
4. |
Xu D S, Walker C T, Godzik J, et al. Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review. Ann Transl Med, 2018, 6(6): 104.
|
5. |
刘政, 李宏伟, 王海洲, 等. 腰椎融合术式研究进展. 医学综述, 2018, 24(11): 2175-2180.
|
6. |
颜文涛, 赵改平, 方新果, 等. 经椎间孔腰椎椎间融合术式模型的生物力学研究. 生物医学工程学杂志, 2015, 32(1): 67-72.
|
7. |
Sim H B, Murovic J A, Cho B Y, et al. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments laboratory investigation. J Neurosurg Spine, 2010, 12(6): 700-708.
|
8. |
Palepu V, Helgeson M D, Molyneaux-Francis M, et al. The effects of bone microstructure on subsidence risk for ALIF, LLIF, PLIF, and TLIF spine cages. J Biomech Eng, 2018, 141(3): 031002.
|
9. |
Fan W, Guo L X. A comparison of the influence of three different lumbar interbody fusion approaches on stress in the pedicle screw fixation system: finite element static and vibration analyses. Int J Numer Method Biomed Eng, 2019, 35(3): e3162.
|
10. |
张振军, 李文钊, 李慧, 等. 多孔钛腰椎融合器在不同入路椎间融合术中的生物力学性能. 医用生物力学, 2019, 34(3): 243-250.
|
11. |
Wilder D G, Pope M H. Epidemiological and aetiological aspects of low back pain in vibration environments. Clin Biomech, 1996, 11(2): 61-73.
|
12. |
Fan W, Guo L X. Prediction of the influence of vertical whole-body vibration on biomechanics of spinal segments after lumbar interbody fusion surgery. Clin Biomech, 2021, 86: 105389.
|
13. |
Rohlmann A, Hinz B, Blüthner R, et al. Loads on a spinal implant measured in vivo during whole-body vibration. Eur Spine J, 2010, 19(7): 1129-1135.
|
14. |
吴楠, 裴葆青, 王唯, 等. 后路椎间融合术后全腰椎模态分析. 医用生物力学, 2018, 33(4): 320-325.
|
15. |
Xu M, Yang J, Lieberman I, et al. The effect of surgical alignment in adult scoliotic spines on axial cyclic vibration: a finite element study. J Comput Inf Sci Eng, 2019, 19(2): 021006.
|
16. |
Fan W, Guo L X. The effect of non-fusion dynamic stabilization on biomechanical responses of the implanted lumbar spine during whole-body vibration. Comput Methods Programs Biomed, 2020, 192: 105441.
|
17. |
Guo L X, Fan W. Dynamic response of the lumbar spine to whole-body vibration under a compressive follower preload. Spine, 2018, 43(3): E143-E153.
|
18. |
Peck J H, Kavlock K D, Showalter B L, et al. Mechanical performance of lumbar intervertebral body fusion devices: an analysis of data submitted to the Food and Drug Administration. J Biomech, 2018, 78(3): 87-93.
|
19. |
Más Y, Gracia L, Ibarz E, et al. Finite element simulation and clinical follow-up of lumbar spine biomechanics with dynamic fixations. PLoS One, 2017, 12(11): e0188328.
|
20. |
Lo H J, Chen C S, Chen H M, et al. Application of an interspinous process device after minimally invasive lumbar decompression could lead to stress redistribution at the pars interarticularis: a finite element analysis. BMC Musculoskelet Disord, 2019, 20(1): 213.
|
21. |
马亮, 许永涛, 佘远举. 腰椎融合联合上一节段棘突间动态固定的有限元分析. 中国组织工程研究, 2018, 22(23): 3647-3653.
|
22. |
Agarwal A, Palepu V, Agarwal A K, et al. Biomechanical evaluation of an endplate-conformed polycaprolactone-hydroxyapatite intervertebral fusion graft and its comparison with a typical nonconformed cortical graft. J Biomech Eng, 2013, 135(6): 61005-61009.
|
23. |
Li J, Wang W K, Zuo R, et al. Biomechanical stability before and after graft fusion with unilateral and bilateral pedicle screw fixation: finite element study. World Neurosurg, 2019, 123: e228-e234.
|
24. |
Shen H K, Chen Y R, Liao Z H, et al. Biomechanical evaluation of anterior lumbar interbody fusion with various fixation options: finite element analysis of static and vibration conditions. Clin Biomech, 2021, 84: 105339.
|
25. |
项嫔, 都承斐, 莫中军, 等. 不同振动载荷刺激对 L1-L5 腰椎的生物力学响应研究. 生物医学工程学杂志, 2015, 32(1): 48-54.
|
26. |
Xu M, Yang J, Lieberman I, et al. Finite element method-based study for effect of adult degenerative scoliosis on the spinal vibration characteristics. Comput Biol Med, 2017, 84: 53-58.
|
27. |
Guo L X, Fan W. The effect of single-level disc degeneration on dynamic response of the whole lumbar spine to vertical vibration. World Neurosurg, 2017, 105: 510-518.
|
28. |
Fan Ruoxun, Liu Jie, Liu Jun. Finite element investigation on the dynamic mechanical properties of low-frequency vibrations on human L2-L3 spinal motion segments with different degrees of degeneration. Med Biol Eng Comput, 2020, 58(12): 3003-3016.
|
29. |
Kim H J, Bak K H, Chun H J, et al. Posterior interspinous fusion device for one-level fusion in degenerative lumbar spine disease: comparison with pedicle screw fixation - preliminary report of at least one year follow up. J Korean Neurosurg Soc, 2012, 52(4): 359-364.
|
30. |
Spicher A, Schmoelz W, Schmid R, et al. Functional and radiographic evaluation of an interspinous device as an adjunct for lumbar interbody fusion procedures. Biomed Tech (Berl), 2020, 65(2): 183-189.
|
31. |
Lo C C, Tsai K J, Zhong Z C, et al. Biomechanical differences of Coflex-F and pedicle screw fixation combined with TLIF or ALIF-a finite element study. Comput Methods Biomech Biomed Engin, 2011, 14(11): 947-956.
|
32. |
Chiang M F, Zhong Z C, Chen C S, et al. Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis. Spine, 2006, 31(19): E682-E689.
|