1. |
刘泽亮, 王效春, 张辉, 等. 磁共振扩散成像在脑胶质瘤预后预测的研究进展. 磁共振成像, 2021, 12(1): 77-80.
|
2. |
汪忠, 李军, 刘崎, 等. 基于改进LeNet-5模型的WHO Ⅱ/Ⅲ级脑胶质瘤影像自动分级的临床研究. 临床神经外科杂志, 2021, 18(1): 21-24, 30.
|
3. |
何远秀, 钟文君, 李悦, 等. 复发脑胶质瘤的诊断及治疗进展. 海南医学, 2021, 32(2): 246-249.
|
4. |
吴玉超, 林岚, 王婧璇, 等. 基于卷积神经网络的语义分割在医学图像中的应用. 生物医学工程学杂志, 2020, 37(3): 533-540.
|
5. |
Tiwari A, Srivastava S, Pant M. Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019. Pattern Recogn Lett, 2020, 131: 244-260.
|
6. |
Feng X, Tustison N J, Patel S H, et al. Brain tumor segmentation using an ensemble of 3D U-Nets and overall survival prediction using radiomic features. Front Comput Neurosci, 2020, 14: 1-12.
|
7. |
Wang G, Li W, Vercauteren T, et al. Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation. Front Comput Neurosc, 2019, 13: 56.
|
8. |
Menze B, Reyes M, Van L K, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE T Med Imaging, 2015, 34(10): 1993-2024.
|
9. |
Shanis Z, Gerber S, Gao M, et al. Intramodality domain adaptation using self ensembling and adversarial training// Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data. Cham: Springer, 2019: 28-36.
|
10. |
Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation// 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 1520-1528.
|
11. |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015: 1-9.
|
12. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
|
13. |
林岚, 吴玉超, 王婧璇, 等. 基于卷积神经网络的语义分割技术及其在脑神经影像应用中的研究进展. 北京工业大学学报, 2021, 47(1): 85-92.
|
14. |
Wang F, Jiang M, Qian C, et al. Residual attention network for image classification// 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE, 2017: 3156-3164.
|
15. |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks// 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 7132-7141.
|
16. |
Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module// 2018 the European Conference on Computer Vision (ECCV). Munich: Springer, 2018: 3-19.
|
17. |
Veit A, Wilber M, Belongie S. Residual networks behave like ensembles of relatively shallow networks// NISP’16: Proceedings of the 30th International Conference on Neural Information Processing System. Barcelona: Curran Associates Inc., 2016, 29: 550-558.
|
18. |
Cui S, Mao L, Jiang J, et al. Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. J Healthc Eng, 2018, 2018: 4940593.
|
19. |
Sun L, Zhang S, Chen H, et al. Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning. Front Neurosci, 2019, 13: 810.
|
20. |
Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization// International MICCAI Brainlesion Workshop. Cham: Springer, 2018: 311-320.
|
21. |
Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. arXiv, 2015: 1511.07122.
|
22. |
Yosinski J, Clune J, Nguyen A, et al. Understanding neural networks through deep visualization. arXiv, 2015: 1506.06579.
|
23. |
Qi Z, Saeed K, Li F. Embedding deep networks into visual explanations. Artif Intell, 2021, 292: 103435.
|
24. |
Yang C, Rangarajan A, Ranka S. Visual explanations from deep 3D convolutional neural networks for Alzheimer’s disease classification. arXiv, 2018: 1803.02544.
|
25. |
Chattopadhay A, Sarkar A, Howlader P, et al. Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks// 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe: IEEE, 2018: 839-847.
|