1. |
Winter D A, Patla A E, Frank J S. Assessment of balance control in humans. Med Prog Technol, 1990, 16(1-2): 31-51.
|
2. |
马关坡, 徐秀林. 下肢康复训练减重支撑系统的研究现状. 中国医学物理学杂志, 2014, 31(1): 4694-4698.
|
3. |
Monthaporn S, Betty M N, Protas E J. Supported treadmill training for gait and balance in a patient with progressive supranuclear palsy. Phys Ther Rehabil, 2002, 82(5): 485-495.
|
4. |
Danielson A, Sunnerhagen K S. Oxygen consumption during treadmill walking with and without bodyweight support in patients with hemiparesis after stroke and in healthy subjects. Arch Phys Med Rehabil, 2000, 81(7): 953-957.
|
5. |
Trueblood P R. Partial body weight treadmill training in persons with chronic stroke. NeuroRehabilitation, 2001, 16(3): 141-153.
|
6. |
Miller E W. Body weight supported treadmill and overground training in a patient post cerebrovascular accident. NeuroRehabilitation, 2001, 16(3): 155-163.
|
7. |
Hesse S, Konrad M, Uhlenbrock D. Treadmill walking with partial body weight support venus floor walking in himiparetie subjects. Arch Phys Med Rehabil, 1999, 80(4): 421-427.
|
8. |
Visintin M, Barbeau H, Korner-Bitensky N, et al. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke, 1998, 29(6): 1122-1128.
|
9. |
Colby S M, Kirkendall D T, Bruzga R F. Electromyographic analysis and energy expenditure of harness supported treadmill walking: implications for knee rehabilitation. Gait Posture, 1999, 10(3): 200-205.
|
10. |
MacKay-Lyons M, Makrides L, Speth S. Effect of 15% body weight support on exercise capacity of adults without impairments. Phys Ther, 2001, 81(11): 1790-1800.
|
11. |
Ma O, Diao X, Martinez L, et al. Dynamically removing partial body mass using acceleration feedback for neural training// 2007 IEEE 10th International Conference on Rehabilitation Robotics. Norway: IEEE, 2007: 1102-1107.
|
12. |
方彬, 沈林勇, 章亚男, 等. 步行训练机器人主动减重控制方法. 上海大学学报(自然科学版), 2011, 17(6): 719-723.
|
13. |
Mirzaee A, Moghadam M M, Saba A M. Conceptual design of an active body weight supports ystem using a linear series elastic actuator// 2019 7th International Conference on Robotics and Mechatronics (ICRoM 2019). Tehran: IEEE, 2019: 80-85.
|
14. |
Pacer Gait Trainers[EB/OL]. (2016-03) [2021-05-10]. https://www.rifton.com/resources/webinars/2016/dynamic-pacer.
|
15. |
朱文超, 徐姚, 马张. 压差式气动减重康复步行训练系统的设计. 生物医学工程学杂志, 2017, 34(4): 565-571.
|
16. |
Morbi A, Ahmadi M, Nativ A. GaitEnable: An omnidirectional robotic system for gait rehabilitation// IEEE International Conference on Mechatronics and Automation (ICMA 2012). Chengdu: IEEE, 2012: 936-941.
|
17. |
Mun K-R, Lim S B, Guo Z, et al. Biomechanical effects of body weight support with a novel robotic walker for over-ground gait rehabilitation. Med Biol Eng Comput, 2017, 55(2): 315-326.
|
18. |
Patton J, Brown D A, Peshkin M, et al. KineAssist: Design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil, 2008, 15(2): 131-139.
|
19. |
Gordon K E, Svendsen B, Harkema S, et al. Closed-loop force controlled body weight support system: CA2464128. 2011-09-20.
|
20. |
Frey M, Colomabo G, Vaglio M, et al. A novel mechatronic body weight support system. IEEE Trans Neural Syst Rehabil Eng, 2006, 14(3): 311-321.
|
21. |
Cho K, Van Merrienboer B, Bahdanau D, et al. On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv, 2014: 1409.1259.
|
22. |
Liang C, Li H, Lei M, et al. Dongting Lake water level forecast and its relationship with the Three Gorges Dam based on a Long Short-Term Memory network. Water, 2018, 10(10): 1389.
|
23. |
Sawner K A, Lavigne J M, Brunnstrom S. Brunnstrom’s movement therapy in hemiplegia: A neurophysiological approach. Philadelphia: Lippincott Williams & Wilkins, 1992.
|
24. |
Karaharju-Huisnan T, Taylor S, Begg R, et al. Gait symmetry quantification during treadmill walking// The Seventh Australian and New Zealand Intelligent Information Systems Conference. Perth: IEEE, 2001: 203-206.
|
25. |
Page S, Wilson R, Chae J. A randomized controlled trial comparing EMG-triggered, cyclic, and sensory electrical stimulation. Arch Phys Med Rehabil, 2016, 30(10): 978-987.
|
26. |
明东, 蒋晟龙, 王忠鹏, 等. 基于人机信息交互的助行外骨骼机器人技术进展. 自动化学报, 2017, 43(7): 1089-1100.
|
27. |
Chua K, Lim W S, Lim P H, et al. An exploratory clinical study on an automated, speed-sensing treadmill prototype with partial body weight support for hemiparetic gait rehabilitation in subacute and chronic stroke patients. Front Neurol, 2020, 11: 747.
|
28. |
Hayes S C, White M, White H S F, et al. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals. Clin Biomech (Bristol, Avon), 2020, 80: 105133.
|
29. |
Hwang J, Shin Y, Park J H, et al. Effects of walkbot gait training on kinematics, kinetics, and clinical gait function in paraplegia and quadriplegia. NeuroRehabilitation, 2018, 42(4): 481-489.
|
30. |
Esser P, Dawes H, Collett J, et al. IMU: Inertial sensing of vertical CoM movement. J Biomech, 2009, 42(10): 1578-1581.
|