1. |
Stein H, Spindler S, Bonakdar N, et al. Production of isolated giant unilamellar vesicles under high salt concentrations. Front Physiol, 2017, 8(63): 1-16.
|
2. |
Garten M, Mosgaard L D, Bornschlőgl T, et al. Whole-GUV patch-clamping. Proc Natl Acad Sci USA, 2017, 114(2): 328-333.
|
3. |
Czogalla A, Grzybek M, Jones W, et al. Validity and applicability of membrane model systems for studying interactions of peripheral membrane proteins with lipids. Biochim Biophys Acta, 2014, 1841(8): 1049-1059.
|
4. |
Kindt J T, Szostak J W, Wang A. Bulk self-assembly of giant, unilamellar vesicles. ACS Nano, 2020, 14(11): 14627-14634.
|
5. |
Zvonimir B, Ana P, Dubravka K, et al. Effect of electrical parameters and cholesterol concentration on giant unilamellar vesicles electroformation. Cell Biochem Biophys, 2020, 78(2): 157-164.
|
6. |
Pott T, Bouvrais H, Méléard P. Giant unilamellar vesicle formation under physiologically relevant conditions. Chem Phys Lipids, 2008, 154(2): 115-119.
|
7. |
Montes L, Alonso A, Goni F M, et al. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys J, 2007, 93(10): 3548-3554.
|
8. |
Angelova M, Dimitrov D S. A mechanism of liposome electroformation. Prog Colloid Polym Sci, 1988, 76: 59-67.
|
9. |
Wang Q, Li W, Hu N, et al. Ion concentration effect (Na+ and Cl−) on lipid vesicle formation. Colloid Surf B-Biointerfaces, 2017, 155: 287-293.
|
10. |
Fan T, Wang Q, Hu N, et al. Preparation of giant lipid vesicles with controllable sizes by a modified hydrophilic polydimethylsiloxane microarray chip. J Colloid Interface Sci, 2018, 536: 53-61.
|
11. |
Hossain M, Blanchard G J. Effects of ethanol and n-butanol on the fluidity of supported lipid bilayers. Chem Phys Lipids, 2021, 238(105091): 1-7.
|
12. |
Ma C D, Wang C, Acevedo-Vélez C, et al. Modulation of hydrophobic interactions by proximally immobilized ions. Nature, 2015, 517(7534): 347-350.
|
13. |
Hwang S, Shao Q, Williams H, et al. Methanol strengthens hydrogen bonds and weakens hydrophobic interactions in proteins-a combined molecular dynamics and NMR study. J Phys Chem B, 2011, 115(20): 6653-6660.
|
14. |
Manca M L, Castangia I, Matricardi P, et al. Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles. Colloid Surf B-Biointerfaces, 2014, 117: 360-367.
|
15. |
Feller S E, Brown C A, Nizza D T, et al. Nuclear overhauser enhancement spectroscopy cross-relaxation rates and ethanol distribution across membranes. Biophys J, 2002, 82(3): 1396-1404.
|
16. |
Cevc G, Löbbecke L, Nagel N, et al. Phospholipid-alcohol interactions: effects of chain-length and headgroup variations. Phosphorus Sulfur, 1996, 109(1-4): 285-288.
|
17. |
Wanderlingh U, D’angelo G, Nibali V C, et al. Interaction of alcohol with phospholipid membrane: NMR and XRD investigations on DPPC–hexanol system. Spectroscopy, 2012, 24: 375-380.
|
18. |
Spector S, Selinger J V, Schnur J M. Thermodynamics of phospholipid tubules in alcohol/water solutions. J Am Chem Soc, 1997, 119(36): 8533-8539.
|
19. |
Mikelj M, Praper T, Demič R, et al. Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions. Anal Biochem, 2013, 435(2): 174-180.
|
20. |
Marcus Y. Effect of ions on the structure of water: structure making and breaking. Chem Rev, 2010, 40(22): 1346-1370.
|
21. |
Mancinelli R, Botti A, Bruni F, et al. Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J Phys Chem B, 2007, 111(48): 13570-13577.
|
22. |
Imberti S, Botti A, Bruni F, et al. Ions in water: The microscopic structure of concentrated hydroxide solutions. J Chem Phys, 2005, 122(194509): 1-9.
|
23. |
Botti A, Bruni F, Imberti S, et al. Ions in water: The microscopic structure of concentrated NaOH solutions. J Chem Phys, 2004, 120(21): 10154-10162.
|
24. |
Vácha R, Jurkiewicz P, Petrov M, et al. Mechanism of interaction of monovalent ions with phosphatidylcholine lipid membranes. J Phys Chem B, 2010, 114(29): 9504-9509.
|
25. |
Vácha R, Siu S W, Petrov M, et al. Effects of alkali cations and halide anions on the DOPC lipid membrane. J Phys Chem A, 2009, 113(26): 7235-7243.
|
26. |
Deplazes E, Tafalla B D, Cranfield C G, et al. Role of ion-phospholipid interactions in zwitterionic phospholipid bilayer ion permeation. J Phys Chem Lett, 2020, 11(15): 6353-6358.
|
27. |
Böckmann R A, Hac A, Heimburg T, et al. Effect of sodium chloride on a lipid bilayer. Biophys J, 2003, 85(3): 1647-1655.
|
28. |
Perttu E K, Kohli A G, Szoka F C. Inverse-phosphocholine lipids: a remix of a common phospholipid. J Am Chem Soc, 2012, 134(10): 4485-4488.
|
29. |
Sachs J N, Woolf T B. Understanding the Hofmeister effect in interactions between chaotropic anions and lipid bilayers: molecular dynamics simulations. J Am Chem Soc, 2003, 125(29): 8742-8743.
|
30. |
Sachs J N, Nanda H, Petrache H I, et al. Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts: molecular dynamics simulations. Biophys J, 2004, 86(6): 3772-3782.
|
31. |
Boström M, Parsons D F, Salis A, et al. Possible origin of the inverse and direct hofmeister series for lysozyme at low and high salt concentrations. Langmuir, 2011, 27(15): 9504-9511.
|
32. |
Edwards S A, Williams D R M. Double layers and interparticle forces in colloid science and biology: analytic results for the effect of ionic dispersion forces. Phys Rev Lett, 2004, 92(24): 248303.
|
33. |
Parsons D F, Ninham B W. Charge reversal of surfaces in divalent electrolytes: the role of ionic dispersion interactions. Langmuir, 2010, 26(9): 6430-6436.
|
34. |
Parsons D F, Ninham B W. Surface charge reversal and hydration forces explained by ionic dispersion forces and surface hydration. Colloid Surf A-Physicochem Eng Asp, 2011, 383(1-3): 2-9.
|
35. |
Santos A P D, Levin Y. Ion specificity and the theory of stability of colloidal suspensions. Phys Rev Lett, 2011, 106(16): 167801.
|
36. |
Chong Y, Kleinhammes A, Tang P, et al. Dominant alcohol–protein interaction via hydration-enabled enthalpy-driven binding mechanism. J Phys Chem B, 2015, 119(17): 5367-5375.
|
37. |
Kanduč M, Netz R R. From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces. Proc Natl Acad Sci USA, 2015, 112(40): 12338-12343.
|
38. |
Leekumjorn S, Sum A K. Molecular investigation of the interactions of trehalose with lipid bilayers of DPPC, DPPE and their mixture. Mol Simul, 2006, 32(3-4): 219-230.
|
39. |
Cacela C, Hincha D K. Low amounts of sucrose are sufficient to depress the phase transition temperature of dry phosphatidylcholine, but not for lyoprotection of liposomes. Biophys J, 2006, 90(8): 2831-2842.
|