1. |
Liu B, Polce E, Sprott J C, et al. Applied chaos level test for validation of signal conditions underlying optimal performance of voice classification methods. J Speech Lang Hear Res, 2018, 16(5): 1130-1139.
|
2. |
彭策, 万柏坤. 嗓音分析在疾病诊断中的应用. 生物医学工程学杂志, 2007, 24(6): 1419-1422.
|
3. |
Virgilijus U, Evaldas P, Aurelija V, et al. Exploring the feasibility of smart phone microphone for measurement of acoustic voice parameters and voice pathology screening. Eur Arch Otorhinolaryngol, 2015, 272(11): 3391-3399.
|
4. |
Hua S C, Ding J J, Wang C H, et al. Learning and feature extraction based fundamental frequency determination algorithm in very low SNR scenario// 2020 IEEE International Symposium on Circuits and Systems (ISCAS). Seville: IEEE, 2020: 1-5.
|
5. |
Zhang T, Wu Y, Shao Y, et al. A pathological multi-vowels recognition algorithm based on LSP feature. IEEE Access, 2019, 7: 58866-58875.
|
6. |
Wu Y, Zhou C, Fan Z, et al. Voice pathology detection and multi-classification using machine learning classifiers// 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD). Xi'an: IEEE, 2020: 319-324.
|
7. |
甘德英, 胡维平, 赵冰心. 传统声学特征和非线性特征用于病态嗓音的比较研究. 生物医学工程学杂志. 2014, 31(5): 1149-1154.
|
8. |
Jiang J J, Zhang Y, Mcgilligan C. Chaos in voice, from modeling to measurement. J Voice, 2006, 20(1): 2-17.
|
9. |
Arias J D, Godino J I, Sáenz N, et al. Automatic detection of pathological voices using complexity measures, noise parameters, and Mel-cepstral coefficients. IEEE T Bio-Med Eng, 2011, 58(2): 370-379.
|
10. |
周强, 张晓俊, 陶智, 等. 嗓音多频带非线性分析的声带病变识别. 声学学报, 2014, 39(1): 111-118.
|
11. |
Liu B, Polce E, Jiang J J. An objective parameter to classify voice signals based on variation in energy distribution. J Voice, 2019, 33(5): 591-602.
|
12. |
Hu Zhangfang, Yue Congcong, Luo Yuan, et al. Research of the auditory feature extraction algorithm based on gammatone filter bank// 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC). Chongqing: IEEE, 2017: 444-449.
|
13. |
Zhao X. CASA-based robust speaker identification. Ohio: The Ohio State University, 2014.
|
14. |
Gomez J A, Moro L, Godino J I. On the design of automatic voice condition analysis systems. Part I: Review of concepts and an insight to the state of the art. Biomed Signal Process Control, 2019, 51: 181-199.
|
15. |
Jiang J J, Yu Z, Stern J. Modeling of chaotic vibrations in symmetric vocal folds. J Acoust Soc Am, 2001, 110(4): 2120-2128.
|
16. |
Jiang J J, Yu Z, Ford C N. Nonlinear dynamics of phonations in excised larynx experiments. J Acoust Soc Am, 2003, 114(4 Pt 1): 2198-2205.
|
17. |
Dibazar A A, Park H O, Berger T W. Nonlinear dynamic modeling of impaired voice// 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Jeju-do: IEEE, 2010: 2770-2773.
|
18. |
DaJer M E, Pereira J C, Maciel C D. Nonlinear dynamical analysis of normal voices// IEEE International Symposium on Multimedia. San Diego: IEEE, 2006: 1-6.
|
19. |
陈莉媛, 薛隆基, 陶智, 等. 非对称黏性空气动力学声带模型及其病理喉声源分类. 声学学报, 2020, 45(5): 153-163.
|
20. |
陈亮, 张雄伟. 语音信号非线性特征的研究. 解放军理工大学学报: 自然科学版, 2000(2): 11-17.
|
21. |
Takens F. Detecting strange attractors in turbulence// Rand D, Young L S. Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics. Berlin, Heidelberg: Springer, 1981, 898: 366-381.
|
22. |
Lin L, Calawerts W, Dodd K, et al. An objective parameter for quantifying the turbulent noise portion of voice signals. J Voice, 2016, 30(6): 664-669.
|
23. |
李佳芮, 洪缨. 喘鸣音的声谱图熵特征分析及检测. 声学学报, 2020, 45(1): 131-136.
|
24. |
Zhou C W, Zhang L L, Tao Z, et al. Classification of normal and pathological voices using convolutional neural network// 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD). Xi’an: IEEE, 2020: 325-329.
|