1. |
Zhou X, Wang C, Li Z, et al. Adaptive histogram thresholding-based leukocyte image segmentation// 2020 Advances in Intelligent Information Hiding and Multimedia Signal Processing. Singapore: Springer, 2020: 451-459.
|
2. |
Wang C, Zhang H, Li Z, et al. White blood cell image segmentation based on color component combination and contour fitting. Curr Bioinform, 2020, 15(5): 463-471.
|
3. |
Hafeez H, Yan P, Guoliang L. Image processing approach for segmentation of WBC nuclei based on k-means clustering// 4th International Conference on Image and Graphics Processing. Sanya: ACM, 2021: 175-181.
|
4. |
Puttamadegowda J, Prasannakumar S C. White blood cell segmentation using fuzzy c means and snake// 2016 International Conference on Computation System and Information Technology for Sustainable Solutions. Bengaluru: IEEE, 2016: 47-52.
|
5. |
Zhong Z, Wang T, Zeng K, et al. White blood cell segmentation via sparsity and geometry constraints. IEEE Access, 2019, 7: 167593-167604.
|
6. |
Di Ruberto C, Loddo A, Putzu L. A multiple classifier learning by sampling system for white blood cells segmentation// 2015 International Conference on Computer Analysis of Images and Patterns. Cham: Springer, 2015: 415-425.
|
7. |
Zheng X, Wang Y, Wang G. White blood cell segmentation using expectation-maximization and automatic support vector machine learning. Data Acquis Process, 2013, 28: 614-619.
|
8. |
Zheng X, Wang Y, Wang G, et al. Fast and robust segmentation of white blood cell images by self-supervised learning. Micron, 2018, 107: 55-71.
|
9. |
Khan S, Javed M H, Ahmed E, et al. Facial recognition using convolutional neural networks and implementation on smart glasses// 2019 International Conference on Information Science and Communication Technology. Jeju Island: IEEE, 2019: 1-6.
|
10. |
He R, Wu X, Sun Z, et al. Wasserstein CNN: learning invariant features for NIR-VIS face recognition. IEEE Trans Pattern Anal Mach Intell, 2018, 41(7): 1761-1773.
|
11. |
Zhao Z Q, Zheng P, Xu S, et al. Object detection with deep learning: a review. IEEE Trans Neural Netw Learning Syst, 2019, 30(11): 3212-3232.
|
12. |
Sun P, Zhang R, Jiang Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals// 2021 Conference on Computer Vision and Pattern Recognition. Shenzhen: IEEE, 2021: 14454-14463.
|
13. |
Tian C, Xu Y, Li Z, et al. Attention-guided CNN for image denoising. Neural Netw, 2020, 124: 117-129.
|
14. |
Quan Y, Chen Y, Shao Y, et al. Image denoising using complex-valued deep CNN. Pattern Recogn, 2021, 111: 107639.
|
15. |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation// 2015 Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440.
|
16. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation// 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
17. |
He K, Gkioxari G, Dollár P, et al. Mask R-CNN// 2017 International Conference on Computer Vision. Venice: IEEE, 2017: 2961-2969.
|
18. |
Fan H, Zhang F, Xi L, et al. LeukocyteMask: An automated localization and segmentation method for leukocyte in blood smear images using deep neural networks. J Biophoton, 2019, 12(7): e201800488.
|
19. |
Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks// 2015 Advances in Neural Information Processing Systems. Montreal: NIPS, 2015: 91-99.
|
20. |
Chen Y, Li J, Xiao H, et al. Dual path networks// 2017 Proceedings of the Advances in Neural Information Processing Systems. Long Beach: NIPS, 2017: 4467-4475.
|
21. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// 2016 Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
22. |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks// 2017 Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708.
|
23. |
Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv, 2017: 1706.05587.
|
24. |
Iglovikov V, Shvets A. TernausNet: U-Net with VGG11 encoder pre-trained on ImageNet for image segmentation. arXiv preprint arXiv, 2018: 1801.05746.
|
25. |
Lu Y, Qin X, Fan H, et al. WBC-Net: A white blood cell segmentation network based on UNet++ and ResNet. Appl Soft Comput, 2021, 101: 107006.
|
26. |
Fan H, Zhang F, Wang R, et al. Correlation-aware deep generative model for unsupervised anomaly detection// Lauw H, Wong R W, Ntoulas A, et al. Advances in knowledge discovery and data mining. PAKDD 2020. Cham: Springer, 2020, 12085: 688-700.
|
27. |
Mondal P, Prodhan U, Al Mamun M, et al. Segmentation of white blood cells using fuzzy c means segmentation algorithm. IOSR-JCE, 2014, 1(16): 1-5.
|
28. |
Singh V K, Romani S, Rashwan H A, et al. Conditional generative adversarial and convolutional networks for X-ray breast mass segmentation and shape classification// 2018 Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2018: 833-840.
|
29. |
Zhou C, Fan H, Li Z. Tonguenet: Accurate localization and segmentation for tongue images using deep neural networks. IEEE Access, 2019, 7: 148779-148789.
|
30. |
Zhou X, Li Z, Xie H, et al. Leukocyte image segmentation based on adaptive histogram thresholding and contour detection. Curr Bioinform, 2020, 15(3): 187-195.
|