1. |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 2012, 25: 1097-1105.
|
2. |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv, 2014: 1409.1556.
|
3. |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1-9.
|
4. |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016, 90: 770-778.
|
5. |
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation//International Conference on Medical image computing and computer-assisted intervention, Springer Cham, 2015: 234-241.
|
6. |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell, 2017, 39(12): 2481-2495.
|
7. |
Shaziya H, Shyamala K, Zaheer R. Automatic lung segmentation on thoracic CT scans using U-Net convolutional network//2018 International Conference on Communication and Signal Processing (ICCSP), 2018: 0643-0647.
|
8. |
Gu Yuchong, Lai Yaoming, Xie Peiliang, et al. Multi-scale prediction network for lung segmentation//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), IEEE, 2019: 438-442.
|
9. |
Gholamiankhah F, Mostafapour S, Goushbolagh N A, et al. Automated lung segmentation from CT images of normal and COVID-19 pneumonia patients. arXiv preprint arXiv, 2021: 2104.02042.
|
10. |
Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation networks//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
11. |
Woo S, Park J, Lee J Y, et al. Cbam: convolutional block attention module//Proceedings of the European conference on computer vision (ECCV), 2018: 3-19.
|
12. |
Hu Jie, Shen Li, Albanie S, et al. Gather-excite: exploiting feature context in convolutional neural networks. NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 9423-9433.
|
13. |
Linsley D, Scheibler D, Eberhardt S, et al. Global-and-local attention networks for visual recognition. Benefits, 2018, 64: 01.
|
14. |
Tay C P, Roy S, Yap K H. AANet: attribute attention network for person re-identifications//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 7127-7136.
|
15. |
Misra D, Nalamada T, Arasanipalai A U, et al. Rotate to attend: convolutional triplet attention module//2021 IEEE Winter Conference on Applications of Computer Vision (WACV), 2021: 3138-3147.
|
16. |
Wang Xiaolong, Girshick R, Gupta A, et al. Non-local Neural Networks//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
|
17. |
Cao Yue, Xu Jiarui, Lin S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019: 1971-1980.
|
18. |
Chen Y, Kalantidis Y, Li J, et al. A2-nets: Double attention networks. Advances in neural information processing systems, 2018: 350-359.
|
19. |
Liu Jiangjiang, Hou Qibin, Cheng Mingming, et al. Improving convolutional networks with self-calibrated convolutions//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 10093-10102.
|
20. |
Gao Zilin, Xie Jiangtao, Wang Qilong, et al. Global second-order pooling convolutional networks//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 3019-3028.
|
21. |
Huang Zilong, Wang Xinggang, Huang Lichao, et al. CCNet: criss-cross attention for semantic segmentation//2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 603-612.
|
22. |
Fang X, Yan P. Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction. IEEE Trans Med Imaging, 2020, 39(11): 3619-3629.
|
23. |
Fu Huazhu, Cheng Jun, Xu Yanwu, et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging, 2018, 37(7): 1597-1605.
|
24. |
Gu Zaiwang, Cheng Jun, Fu Huazhu, et al. Ce-net: context encoder network for 2D medical image segmentation. IEEE Trans Med Imaging, 2019, 38(10): 2281-2292.
|
25. |
Yu Changqian, Wang Jingbo, Peng Chao, et al. Learning a discriminative feature network for semantic segmentation//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 1857-1866.
|
26. |
Zhang Z, Zhang X, Peng C, et al. Exfuse: enhancing feature fusion for semantic segmentation// Proceedings of the European Conference on Computer Vision (ECCV), 2018: 269-284.
|
27. |
Zhang Pingping, Liu Wei, Lei Yinjie, et al. Cascaded context pyramid for full-resolution 3D semantic scene completion//2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 7800-7809.
|
28. |
Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate attention for efficient mobile network design//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 13708-13717.
|
29. |
Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization//2017 IEEE International Conference on Computer Vision (ICCV), 2017: 618-626.
|
30. |
Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv, 2017: 1706.05587.
|