1. |
Zhang Bingtao, Yan Guanghui, Yang Zhifei, et al. Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification. IEEE Trans Neural Syst Rehabil Eng, 2021, 29(1): 215-229.
|
2. |
World Health Organization (WHO). Depression. (2018-09-21)[2021-12-10]. https: //www.who.int/health-topics/depressiontab=tab_1.
|
3. |
Zhang Xiaowei, Shen Jian, Din Z U, et al. Multimodal depression detection: fusion of electroencephalography and paralinguistic behaviors using a novel strategy for classifier ensemble. IEEE J Biomed Health Inform, 2019, 23(6): 2265-2275.
|
4. |
Yao Z J, Fu Y, Wu J F, et al. Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients. Brain Imaging Behav, 2020, 14(3): 653-667.
|
5. |
Alageel A, Albalawi F F, Aldosary F. Magnetoencephalography (MEG)-based biomarkers for depression//The 21st Annual ISBD Conference: Global Advances in Bipolar Disorder and Depression, Sydney: Wiley, 2019, 2019(21): 20-23.
|
6. |
Cai H S, Qu Z D, Hu B, et al. Feature-level fusion approaches based on multimodal EEG data for depression recognition. Information Fusion, 2020, 59(2020): 127-138.
|
7. |
Li X W, Zhang X, Hu B, et al. Depression recognition using machine learning methods with different feature generation strategies. Artif Intell Med, 2019, 99: 101696.
|
8. |
Zeng Lingli, Shen Hui, Liu Li, et al. Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain, 2012, 135(5): 1498-1507.
|
9. |
Yu Haitao, Lei Xinyu, Song Zhenxi, et al. Supervised network-based fuzzy learning of EEG signals for Alzheimer's disease identification. IEEE Transactions on Fuzzy Systems, 2020, 28(1): 60-71.
|
10. |
Zhang B T, Lei T, Liu H, et al. EEG-based automatic sleep staging using ontology and weighting feature analysis, Comput Math Method M, 2018, 2018: 6534041.
|
11. |
Fingelkurts A A, Kähkönen S. Functional connectivity in the brain-is it an elusive concept?. Neurosci Biobehav Rev, 2005, 28(8): 827-836.
|
12. |
Cai H S, Gao Y W, Sun S T, et al. MODMA dataset: a multi-modal open dataset for mental-disorder analysis. (2019-11-01) [2021-12-10]. http: //modma.lzu.edu.cn/data/index/.
|
13. |
Zhang Bingtao, Zhou Wenying, Cai Hanshu, et al. Ubiquitous depression detection of sleep physiological data by using combination learning and functional networks. IEEE Access, 2020, 8: 94220-94235.
|
14. |
Peng H, Hu B, Shi Q X, et al. Removal of ocular artifacts in EEG-an improved approach combining DWT and ANC for portable applications. IEEE J Biomed Health Inform, 2013, 17(3): 600-607.
|
15. |
司慧芳, 谢天, 高军峰, 等. 基于相位延迟指数的脑功能网络及测谎研究. 电子学报, 2018, 46(7): 1742-1747.
|
16. |
Li X W, Zhu J, Hu B, et al. A resting-state brain functional network study in MDD based on minimum spanning tree analysis and the hierarchical clustering. Complexity, 2017, 2017: 9514369.
|
17. |
Fraschini M, Demuru M, Crobe A, et al. The effect of epoch length on estimated EEG functional connectivity and brain network organisation. J Neural Eng, 2016, 13(3): 036015.
|
18. |
梁夏, 王金辉, 贺永. 人脑连接组研究:脑结构网络和脑功能网络. 科学通报, 2010, 55(16): 1565-1583.
|
19. |
Li N, Hou J C, Sha L. Design and analysis of an MST-based topology control algorithm. IEEE T Wirel Commun, 2005, 4(3): 1195-1206.
|
20. |
Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci, 2009, 10(3): 186-198.
|
21. |
Zhang Junran, Wang Jinhui, Wu Qizhu, et al. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry, 2011, 70(4): 334-342.
|
22. |
Sun S T, Li X W, Zhu J, et al. Graph theory analysis of functional connectivity in major depression disorder with high-density resting state EEG data. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(3): 429-439.
|
23. |
Bian Zhijie, Li Qiuli, Wang Lei, et al. Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes. Front Aging Neurosci, 2014, 6: 11.
|
24. |
Cai Hanshu, Zhang Xiangzi, Zhang Yanhao, et al. A case-based reasoning model for depression based on three-electrode EEG data. IEEE Trans Affect Comput, 2020, 11(3): 383-392.
|
25. |
Cai H S, Han J S, Chen Y F, et al. A pervasive approach to EEG-based depression detection. Complexity, 2018, 2018: 5238028.
|
26. |
Li X W, Hu B, Sun S T, et al. EEG-based mild depressive detection using feature selection methods and classifiers. Comput Methods Programs Biomed, 2016, 136: 151-161.
|
27. |
Cavanagh J F, Bismark A W, Frank M J, et al. Multiple dissociations between comorbid depression and anxiety on reward and punishment processing: evidence from computationally informed EEG. Comput Psychiatr, 2019, 3: 1-17.
|
28. |
Zhou Yuan, Yu Chunshui, Zheng Hua, et al. Increased neural resources recruitment in the intrinsic organization in major depression. J Affect Disord, 2010, 121(3): 220-230.
|
29. |
Connolly C G. Wu J, Ho T C, et al. Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents. Biological Psychiatry, 2013, 74(12): 898-907.
|
30. |
Joormann J, Gotlib I H. Emotion regulation in depression: relation to cognitive inhibition. Cogn Emot, 2010, 24(2): 281-298.
|
31. |
Leistedt S J, Nathalie C, Martine D, et al. Altered sleep brain functional connectivity in acutely depressed patients. Hum Brain Mapp, 2009, 30(7): 2207-2219.
|
32. |
Liu Yong, Liang Meng, Zhou Yuan, et al. Disrupted small-world networks in schizophrenia. Brain, 2008, 131(4): 945-961.
|