1. |
伏云发, 郭衍龙, 张夏冰, 等. 脑-机接口——革命性的人机交互. 北京: 国防工业出版社, 2020.
|
2. |
Graimann B, Allison B, Pfurtscheller G. Brain-computer interfaces: revolutionizing human-computer interaction. Springer Publishing Company, 2013.
|
3. |
Ramsey N F, Millán J D R. Brain-computer interfaces. Elsevier, 2020.
|
4. |
伏云发, 丁鹏, 罗建功, 等. 脑-计算机接口. 北京: 国防工业出版社, 2022.
|
5. |
Cetin O, Temurtas F. A comparative study on classification of magnetoencephalography signals using probabilistic neural network and multilayer neural network. Soft Comput, 2021, 25(3): 2267-2275.
|
6. |
Ovchinnikova A O, Vasilyev A N, Zubarev I P, et al. MEG-based detection of voluntary eye fixations used to control a computer. Front Neurosci, 2021, 15: 619591.
|
7. |
Roy S, Rathee D, Chowdhury A, et al. Assessing impact of channel selection on decoding of motor and cognitive imagery from MEG data. J Neural Eng, 2020, 17(5): 056037.
|
8. |
Chholak P, Niso G, Maksimenko V A, et al. Visual and kinesthetic modes affect motor imagery classification in untrained subjects. Sci Rep, 2019, 9(1): 9838.
|
9. |
Rathee D, Raza H, Roy S, et al. A magnetoencephalography dataset for motor and cognitive imagery-based brain-computer interface. Sci Data, 2021, 8(1): 120.
|
10. |
Belkacem A N. Real-time human-like robot control based on brain-computer interface//2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH), IEEE, 2021: 9378751.
|
11. |
Feng Yulong, Xiao Wei, Wu Teng, et al. A new recognition method for the auditory evoked magnetic fields. Comput Intell Neurosci, 2021, 2021: 6645270.
|
12. |
伏云发, 龚安民, 陈超, 等. 面向实用的脑-机接口:缩小研究与实际应用之间的差距. 北京: 科学出版社, 2022.
|
13. |
吕晓彤, 丁鹏, 李思语, 等. 脑机接口人因工程及应用:以人为中心的脑机接口设计和评价方法. 生物医学工程学杂志, 2021, 38(2): 210-223.
|
14. |
伏云发, 杨秋红, 徐宝磊, 等. 脑-机接口原理与实践. 北京: 国防工业出版社, 2017.
|
15. |
Chholak P, Kurkin S A, Hramov A E, et al. Event-related coherence in visual cortex and brain noise: an MEG study. Applied Sciences, 2021, 11(1): 375.
|
16. |
Gaur P, Kaushik G, Pachori R B, et al. Comparison analysis: single and multichannel EMD-based filtering with application to BCI//Machine Intelligence And Signal Analysis. Singapore: Springer,2019, 2019: 107-118.
|
17. |
Niso G, Tadel F, Bock E, et al. Brainstorm pipeline analysis of resting-state data from the open MEG archive. Front Neurosci, 2019, 13: 284.
|
18. |
Shahid A , Wahab M , Rafiuddin N , et al. Decrypting wrist movement from MEG signal using SVM classifier. Journal of Intelligent and Fuzzy Systems, 2018, 35: 1-8.
|
19. |
Tao Y, Yan N, Wang G. Hand movement prediction based on EEG signals by combining MEMD and CSP//2nd International Conference on Image Processing and Machine Vision, 2020: 105-112.
|
20. |
Feng J K, Jin J, Daly I, et al. An optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI system. Comput Intell Neurosci, 2019, 2019(6): 8068357.
|
21. |
Roffo G, Melzi S, Castellani U, et al. Infinite feature selection: a graph-based feature filtering approach. IEEE Trans Pattern Anal Mach Intell, 2021, 43(12): 4396-4410.
|
22. |
Kim J, Kim M Y, Kwon H, et al. Feature optimization method for machine learning-based diagnosis of schizophrenia using magnetoencephalography. J Neurosci Methods, 2020, 338: 108688.
|
23. |
Goni M R, Rahman T. Predictive modeling on MEG signal to classify hand and wrist movement using UNEQ and KNN//2020 IEEE Region 10 Symposium (TENSYMP), IEEE, 2020: 815-818.
|
24. |
Babajani-Feremi A, Noorizadeh N, Mudigoudar B, et al. Predicting seizure outcome of vagus nerve stimulation using MEG-based network topology. Neuroimage Clin, 2018, 19: 990-999.
|
25. |
Caliskan A, Yuksel M E, Badem H, et al. A deep neural network classifier for decoding human brain activity based on magnetoencephalography. Elektronika Ir Elektrotechnika, 2017, 23(2): 63-67.
|
26. |
Zubarev I, Zetter R, Halme H L, et al. Adaptive neural network classifier for decoding MEG signals. Neuroimage, 2019, 197: 425-434.
|
27. |
Dash D, Ferrari P, Heitzman D, et al. Decoding speech from single trial MEG signals using convolutional neural networks and transfer learning//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2019: 5531-5535.
|
28. |
Collura T F. 神经反馈原理与实践, 伏云发, 龚安民, 南文雅, 译. 北京:电子工业出版社,2021.
|
29. |
Rana K D, Khan S, Hämäläinen M S, et al. A computational paradigm for real-time MEG neurofeedback for dynamic allocation of spatial attention. Biomed Eng Online, 2020, 19(1): 45.
|
30. |
Grigorev N A, Savosenkov A O, Lukoyanov M V, et al. A BCI-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 1583-1592.
|
31. |
Mladenović J. Standardization of protocol design for user training in EEG-based brain-computer interface. J Neural Eng, 2021, 18(1): 011003.
|
32. |
Foldes S T, Boninger M L, Weber D J, et al. Effects of MEG-based neurofeedback for hand rehabilitation after tetraplegia: preliminary findings in cortical modulations and grip strength. J Neural Eng, 2020, 17(2): 026019.
|
33. |
Bagherzadeh Y, Baldauf D, Pantazis D, et al. Alpha synchrony and the neurofeedback control of spatial attention. Neuron, 2020, 105(3): 577-587.
|
34. |
李红卫, 陈小刚. 基于高级控制策略的脑-机接口控制机械臂系统. 北京生物医学工程, 2019, 38(1): 36-41.
|
35. |
Fahimi F, Zhang Z, Goh W B, et al. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI. J Neural Eng, 2019, 16(2): 026007.
|
36. |
Zhang X, Yao L, Wang X, et al. A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J Neural Eng, 2020, 18(3): 031002.
|
37. |
Abdellaoui I A, Fernandez J G, Sahinli C, et al. Deep brain state classification of MEG data. arXiv preprint, arXiv:2007.00897, 2020.
|
38. |
戴廷飞, 刘邈, 叶阳阳, 等. 人机共享控制机器人系统的应用与发展. 仪器仪表学报, 2019(3): 62-73.
|
39. |
Millan J J D R, Galan F, Vanhooydonck D, et al. Asynchronous non-invasive brain-actuated control of an intelligent wheelchair. Annu Int Conf IEEE Eng Med Biol Soc, 2009, 2009: 3361-3364.
|
40. |
Hsieh Y W, Lee M T, Lin Y H, et al. Motor cortical activity during observing a video of real hand movements versus computer graphic hand movements: an MEG study. Brain Sci, 2020, 11(1): 6.
|
41. |
Roberts G, Holmes N, Alexander N, et al. Towards OPM-MEG in a virtual reality environment. Neuroimage, 2019, 199: 408-417.
|
42. |
Boto E, Holmes N, Leggett J, et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 2018, 555(7698): 657-661.
|
43. |
Sorbo A R, Lombardi G, La Brocca L, et al. Unshielded magnetocardiography: repeatability and reproducibility of automatically estimated ventricular repolarization parameters in 204 healthy subjects. Ann Noninvasive Electrocardiol, 2018, 23(3): e12526.
|