1. |
连强强, 迟博婧, 张柳, 等. Wnt信号通路对软骨和软骨下骨双靶向调控及其在骨关节炎进展中的作用. 中国修复重建外科杂志, 2020, 34(6): 797-803.
|
2. |
李锋, 王成焘. 关节软骨的微摩擦接触力学特性. 医用生物力学, 2016, 31(2): 124-128.
|
3. |
刘志动, 高丽兰, 张春秋, 等. 关节软骨不同层区的率相关性能研究. 医用生物力学, 2014, 29(2): 141-145.
|
4. |
钟红刚, 张万强, 关继超, 等. 外置式人工关节控制下的家兔膝关节再生与功能恢复. 医用生物力学, 2014, 29(4): 72-78.
|
5. |
许西凡, 高丽兰, 门玉涛, 等. 不同压缩条件下关节软骨的回弹力学性能. 中国组织工程研究, 2017, 21(20): 3147-3151.
|
6. |
Párraga Quiroga J M, Wilson W, Ito K, et al. The effect of loading rate on the development of early damage in articular cartilage. Biomech Model Mechan, 2017, 16(1): 263-267.
|
7. |
Vazquez K J, Andreae J T, Henak C R. Cartilage-on-cartilage cyclic loading induces mechanical and structural damage. J Mech Behav Biomed, 2019, 98: 262-267.
|
8. |
茅泳涛, 董启榕. 双极射频能量对人膝关节软骨的急性效应. 中国组织工程研究与临床康复, 2007(5): 868-871.
|
9. |
Maerz T, Newton M D, Matthew H, et al. Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization. Osteoarthr Cartilage, 2016, 24(2): 290-298.
|
10. |
Newton M D, Jeffrey O, Karissa G, et al. Articular cartilage surface roughness as an imaging-based morphological indicator of osteoarthritis: A preliminary investigation of osteoarthritis initiative subjects. J Orthop Res, 2017, 35(12): 2755-2764.
|
11. |
Ihnatouski M, Pauk J, Karev D , et al. AFM-based method for measurement of normal and osteoarthritic human articular cartilage surface roughness. Materials, 2020, 13(10): 2302-2314.
|
12. |
Youssef D, El-Azab J, Kandel H, et al. Biospeckle local contrast analysis for surface roughness study of articular cartilage. Optik, 2019, 183: 55-64.
|
13. |
刘爱峰, 魏强, 马剑雄, 等. 膝关节软骨摩擦行为研究进展. 中国矫形外科杂志, 2014, 22(11): 996-998.
|
14. |
王泓, 马信龙, 张园. 新鲜人关节软骨试件在体外不同环境下退变的组织学观察. 中国组织工程研究与临床康复, 2010, 14(15): 2701-2704.
|
15. |
Verteramo A, Seedhom B B. Effect of a single impact loading on the structure and mechanical properties of articular cartilage. J Biomech, 2007, 40(16): 3580-3589.
|
16. |
付彦铭. 自由式滑雪空中技巧运动员落地稳定瞬间人体膝关节软骨损伤风险的研究. 沈阳体育学院学报, 2018, 37(1): 70-74.
|
17. |
李晓明, 门玉涛, 张春秋. 压缩载荷下微缺损关节软骨流体场变化的数值分析. 中国组织工程研究, 2018, 22(32): 5117-5122.
|
18. |
Franz T, Hasler E M, Hagg R, et al. In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthr Cartilage, 2001, 9(6): 582-592.
|
19. |
Yang Xiuping, Sun Fengju, Wang Longtao, et al. Solute transport in articular cartilage under rolling-compression load. J Mech Med Biol, 2019, 19(6): 54-68.
|
20. |
邱璐璐. 步态下膝关节力学性能的数值分析及关节软骨的传质实验研究. 天津: 天津理工大学, 2018.
|
21. |
陈亮宇, 赵婧, 何泽栋, 等. 水含量对骨组织生物摩擦学行为的影响. 生物医学工程学杂志, 2016, 33(3): 466-472.
|
22. |
刘同众, 朱林, 程曦, 等. 基于多体动力学和有限元方法的三级跳运动人体膝关节冲击损伤分析研究. 振动与冲击, 2015, 34(17): 44-49, 57.
|
23. |
许刚. 缺损关节软骨棘轮实验及冲击响应的数值研究. 天津: 天津理工大学, 2019.
|
24. |
Kaplan J T, Neu C P, Drissi H, et al. Cyclic loading of human articular cartilage: The transition from compaction to fatigue. J Mech Behav Biomed, 2017, 65: 734-742.
|
25. |
Widmyer M R, Utturkar G M, Leddy H A, et al. High body mass index is associated with increased diurnal strains in the articular cartilage of the knee. Arthritis Rheumatol, 2013, 65(10): 2615-2622.
|
26. |
Travascio F, Eltoukhy M, Cami S, et al. Altered mechano-chemical environment in hip articular cartilage: effect of obesity. Biomech Model Mechan, 2014, 13(5): 945-959.
|
27. |
Anandacoomarasamy A, Leibman S, Smith G, et al. Weight loss in obese people has structure-modifying effects on medial but not on lateral knee articular cartilage. Ann Rheum Dis, 2012, 71(1): 26-32.
|
28. |
杨光露, 郭杨, 涂鹏程, 等. 不同机械刺激调控软骨细胞代谢的研究进展. 生物医学工程学杂志, 2020, 37(6): 1101-1108.
|
29. |
谢锦伟, 鲁凌云, 余希杰. 细胞衰老在骨关节炎发病机制中的研究进展. 中国修复重建外科杂志, 2021, 35(4): 519-526.
|
30. |
刘波, 戴国钢, 马建, 等. 非周期大强度运动训练对兔关节软骨压凹特性的影响. 中国生物医学工程学报, 2003, 22(4): 373-376.
|
31. |
刘蕾. 静力性负重对人体身高影响的实验研究. 济南: 山东师范大学, 2011.
|
32. |
Milicevic D, Noguchi M, Quadrilatero J, et al. The effect of rest insertions during loading on stifle joint mechanics and cartilage damage in a porcine model. Osteoarthr Cartilage, 2017, 25: S326.
|
33. |
Dreiner M, Willwacher S, Kramer A, et al. Short-term response of serum cartilage oligomeric matrix protein to different types of impact loading under normal and artificial gravity. Front Physiol, 2020, 11: 1032.
|
34. |
蔡振兵. 扭动微动磨损机理研究. 成都: 西南交通大学, 2009.
|