1. |
Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Siegel R L, Miller K D, Jemal A. Cancer statistics, 2020. CA Cancer J Clin, 2020, 70(1): 7-30.
|
3. |
LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput, 1989, 1(4): 541-551.
|
4. |
Hua K L, Hsu C H, Hidayati H C, et al. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther, 2015, 8: 2015-2022.
|
5. |
Liu Shuang, Xie Yiting, Jirapatnakul A, et al. Pulmonary nodule classification in lung cancer screening with three-dimensional convolutional neural networks. J Med Imaging (Bellingham), 2017, 4(4): 041308.
|
6. |
Marques S, Schiavo F, Ferreira C A, et al. A multi-task CNN approach for lung nodule malignancy classification and characterization. Expert Syst Appl, 2021, 184: 115469.
|
7. |
Astaraki M, Zakko Y, Toma D I, et al. Benign-malignant pulmonary nodule classification in low-dose CT with convolutional features. Phys Med, 2021, 83: 146-153.
|
8. |
Tang Siyuan, Ma Rong, Li Qingqian, et al. Classification of benign and malignant pulmonary nodules based on the multiresolution 3D DPSECN model and semisupervised clustering. IEEE Access, 2021, 9: 43397-43410.
|
9. |
Setio A A, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging, 2016, 35(5): 1160-1169.
|
10. |
Roth H R, Lu L, Seff A, et al. A new 2. 5 D representation for lymph node detection using random sets of deep convolutional neural network observations//Medical Image Computing and Computer-Assisted Intervention, Boston: MICCAI, 2014: 520-527.
|
11. |
Zhai Penghua, Tao Yaling, Chen Hao, et al. Multi-task learning for lung nodule classification on chest CT. IEEE Access, 2020, 8: 180317-180327.
|
12. |
Xie Y, Xia Y, Zhang J, et al. Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT. IEEE Trans Med Imaging, 2019, 38(4): 991-1004.
|
13. |
Armato S G, Mclennan G, Bidaut L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys, 2011, 38(2): 915-931.
|
14. |
Manos D, Seely J M, Taylor J, et al. The lung reporting and data system (LU-RADS): a proposal for computed tomography screening. Canadian Association of Radiologists Journal, 2014, 65(2): 121-134.
|
15. |
Reeves A P, Biancardi A M. The lung image database consortium (lidc) nodule size report. Cornell Univ, 2011. (2011-10-27) [2021-09-15]. http: //www.via.cornell.edu/lidc/list3.2.html.
|
16. |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res, 2014, 15(1): 1929-1958.
|
17. |
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv: 1502.03167, 2015.
|
18. |
Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation networks//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City: IEEE, 2018: 7132-7141.
|
19. |
Cantor A B. Sample-size calculations for Cohen's kappa. Psychol Methods, 1996, 1(2): 150.
|
20. |
Fleiss J L, Cohen J. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ Psychol Meas, 1973, 33(3): 613-619.
|
21. |
Randolph J J. Free-marginal multirater Kappa(multirater Kfree): an alternative to Fleiss' fixed-marginal multirater Kappa//the Joensuu Learning and Instruction Symposium, Joensuu, Finland: ERIC, 2005: ED490661.
|
22. |
Willerman B. The adaptation and use of Kendall's coefficient of concordance (W) to sociometric-type rankings. Psychol Bull, 1955, 52(2): 132-133.
|
23. |
Shewaye T N, Mekonnen A A. Benign-malignant lung nodule classification with geometric and appearance histogram features. arXiv preprint arXiv: 1605.08350, 2016.
|
24. |
Kumar D, Chung A G, Shafiee M J, et al. Discovery radiomics for pathologically-proven computed tomography lung cancer prediction. arXiv preprint arXiv: 1509.00117, 2017.
|
25. |
Kumar D, Wong A, Clausi D A. Lung nodule classification using deep features in CT images//2015 12th Conference on Computer and Robot Vision, Halifax: IEEE, 2015: 133-138.
|
26. |
Kang Guixia, Liu Kui, Hou Beibei, et al. 3D multi-view convolutional neural networks for lung nodule classification. PLoS One, 2017, 12(11): 12-22.
|
27. |
Lampert T, Stumpf A, Gancarski P. An empirical study into annotator agreement, ground truth estimation, and algorithm evaluation. IEEE Trans Image Process, 2016, 25(6): 2557-2572.
|