1. |
Siegel R L, Miller K D, Fuchs H E, et al. Cancer statistics, 2021. CA Cancer J Clin, 2021, 71(11): 7-33.
|
2. |
Mishra K, Jain A K. Liposomes: an emerging approach for the treatment of cancer. Curr Pharm Des, 2021, 27(20): 2398-2414.
|
3. |
Haider M, Abdin S M, Kamal L, et al. Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics, 2020, 12(3): 288.
|
4. |
Klochkov S G, Neganova M E, Nikolenko V N, et al. Implications of nanotechnology for the treatment of cancer: recent advances. Semin Cancer Biol, 2021, 69: 190-199.
|
5. |
Kiaie S H, Mojarad J S, Khaleseh F, et al. Axial pharmaceutical properties of liposome in cancer therapy: recent advances and perspectives. Int J Pharm, 2020, 581: 119269.
|
6. |
Das R P, Gandhi V V, Singh B G, et al. Passive and active drug targeting: role of nanocarriers in rational design of anticancer formulations. Curr Pharm Des, 2019, 25(28): 3034-3056.
|
7. |
Bangham A D, Standish M M, Watkins J C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol, 1965, 13(1): 238-252.
|
8. |
Filipczak N, Pan J, Yalamarty S, et al. Recent advancements in liposome technology. Adv Drug Deliv Rev, 2020, 156: 4-22.
|
9. |
Zhang Y R, Lin R, Li H J, et al. Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdiscip Rev: Nanomed Nanobiotechnol, 2019, 11(1): e1519.
|
10. |
Wilhelm S, Tavares A J, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater, 2016, 1(5): 16014.
|
11. |
Yan W, Leung S S, To K K. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine (Lond), 2020, 15(3): 303-318.
|
12. |
Liu C Y, Ewert K K, Yao W, et al. A multifunctional lipid incorporating active targeting and dual-control release capabilities for precision drug delivery. ACS Appl Mater Interfaces, 2020, 12(1): 70-85.
|
13. |
Jia D L, Yang Y J, Yuan F J, et al. Increasing the antitumor efficacy of doxorubicin liposomes with coupling an anti-EGFR affibody in EGFR-expressing tumor models. Int J Pharm, 2020, 586: 119541.
|
14. |
Silva J D, Fernandes R S, Oda C R, et al. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed Pharmacother, 2019, 118: 109323.
|
15. |
Yu S, Bi X J, Yang L, et al. Co-delivery of paclitaxel and PLK1-Targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo. J Biomed Nanotechnol, 2019, 15(6): 1135-1148.
|
16. |
Cadinoiu A N, Rata D M, Atanase L I, et al. Aptamer-functionalized liposomes as a potential treatment for basal cell carcinoma. Polymers, 2019, 11(9): 1515.
|
17. |
Duan S L, Yu Y T, Lai C H, et al. Vincristine-loaded and sgc8-modified liposome as a potential targeted drug delivery system for treating acute lymphoblastic leukemia. J Biomed Nanotechnol, 2018, 15(5): 910-921.
|
18. |
Zheng T T, Feng H H, Liu Li, et al. Enhanced antiproliferative effect of resveratrol in head and neck squamous cell carcinoma using GE11 peptide conjugated liposome. Int J Mol Med, 2019, 43(4): 1635-1642.
|
19. |
Wei Y, Song S, Duan N, et al. MT1-MMP-activated liposomes to improve tumor blood perfusion and drug delivery for enhanced pancreatic cancer therapy. Adv Sci (Weinh), 2020, 7(17): 1902746.
|
20. |
Yuan B, Zhao Y, Dong S Y, et al. Cell-penetrating peptide-coated liposomes for drug delivery across the blood-brain barrier. Anticancer Res, 2019, 39(1): 237-243.
|
21. |
Dorjsuren B, Chaurasiya B, YE Z, et al. Cetuximab-coated thermo-sensitive liposomes loaded with magnetic nanoparticles and doxorubicin for targeted EGFR-expressing breast cancer combined therapy. Int J Nanomedicine, 2020, 15: 8201-8215.
|
22. |
Ollila T A, Butera J, Egan P C, et al. Vincristine sulfate liposome injection (VSLI) with bendamustine and rituximab as first-line therapy for indolent B-cell lymphomas: a phase 1 study. Blood, 2020, 136(1): 15-16.
|
23. |
Zhang B, Qi L, Wang X, et al. Phase II clinical trial using camrelizumab combined with apatinib and chemotherapy as the first-line treatment of advanced esophageal squamous cell carcinoma. Cancer Commun (Lond), 2020, 40(12): 711-720.
|
24. |
Moore K N, Bookman M, Sehouli J, et al. Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage III or IV ovarian cancer: placebo-controlled randomized phase III trial (IMagyn050/GOG 3015/ENGOT-OV39). J Clin Oncol, 2021, 39(17): 1842-1855.
|
25. |
Kojima T, Shah M A, Muro K, et al. Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer. J Clin Oncol, 2020, 38(35): 4138-4148.
|
26. |
Nwahara N, Abrahams G, Prinsloo E, et al. Folic acid-modified phthalocyanine-nanozyme loaded liposomes for targeted photodynamic therapy. Photodiagn Photodyn Ther, 2021, 36: 102527.
|
27. |
Ding J Q, Zhao D, Hu Y W, et al. Terminating the renewal of tumor-associated macrophages: a sialic acid-based targeted delivery strategy for cancer immunotherapy, 2019, 571: 118706.
|
28. |
Ni S J, Zhuo Z J, Pan Y F, et al. Recent progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl Mater Interfaces, 2021, 13(8): 9500-9519.
|
29. |
Kang H Z, O'donoghue M B, Liu H P, et al. A liposome-based nanostructure for aptamer directed delivery. Chem Commun (Camb), 2010, 46(2): 249-251.
|
30. |
Nsairat H, Mahmoud I S, Odeh F, et al. Grafting of anti-nucleolin aptamer into preformed and remotely loaded liposomes through aptamer-cholesterol post-insertion. RSC Adv, 2020, 10(59): 36219-36229.
|
31. |
Cao Y J, Zhou Y J, Zhuang Q F, et al. Anti-tumor effect of RGD modified PTX loaded liposome on prostatic cancer. Int J Clin Exp Med, 2015, 8(8): 12182-12191.
|
32. |
Huang X Q, Chen L Z, Zhang Y P, et al. GE11 peptide conjugated liposomes for EGFR-targeted and chemophotothermal combined anticancer therapy. Bioinorg Chem Appl, 2021, 2021: 5534870.
|
33. |
Zhou J Q, Li Y Y, Huang W L, et al. Source and exploration of the peptides used to construct peptide-drug conjugates. Eur J Med Chem, 2021: 113712.
|
34. |
Cheng Y, Ho K, Lin W, et al. Bispecific antibody (HER2 x mPEG) enhances anti-cancer effects by precise targeting and accumulation of mPEGylated liposomes. Biomaterials, 2020, 111: 386-397.
|
35. |
Haeri A, Zalba S, Ten Hagen T L, et al. EGFR targeted thermosensitive liposomes: a novel multifunctional platform for simultaneous tumor targeted and stimulus responsive drug delivery. Colloids Surf B Biointerfaces, 2016, 146: 657-669.
|
36. |
Yan G H, Wang K, Shao Z X, et al. Artificial antibody created by conformational reconstruction of the complementary-determining region on gold nanoparticles. Proc Natl Acad Sci U S A, 2018, 115(1): E34-E43.
|
37. |
Cao Aoneng. The last secret of protein folding: the real relationship between long-range interactions and local structures. Protein J, 2020, 39(5): 422-433.
|
38. |
曹傲能. 蛋白质结构的“限域下最低能量结构片段”假说与蛋白质进化的“石器时代”. 物理化学学报, 2020, 36(1): 231-240.
|
39. |
Abreu T R, Biscaia M, Gonçalves N, et al. In vitro and in vivo tumor models for the evaluation of anticancer nanoparticles. Bio-Nanomed Cancer Therapy, 2021, 1295: 271-299.
|
40. |
Antoniou A, Giofrè S, Seneci P, et al. Stimulus-responsive liposomes for biomedical applications. Drug Discov Today, 2021, 26(8): 1794-1824.
|
41. |
De Leo V, Milano F, Agostiano A, et al. Recent advancements in polymer/liposome assembly for drug delivery: from surface modifications to hybrid vesicles. Polymers (Basel), 2021, 13(7): 1027.
|