1. |
李丰琴, 叶志斌. 高尿酸血症与糖尿病及其并发症研究进展. 中国实用内科杂志, 2017, 37(6): 569-572.
|
2. |
Sandra S, Lesmana C R A, Purnamasari D, et al. Hyperuricemia as an independent risk factor for non-alcoholic fatty liver disease (NAFLD) progression evaluated using controlled attenuation parameter-transient elastography: lesson learnt from tertiary referral center. Diabetes Metab Syndr, 2019, 13(1): 424-428.
|
3. |
Su Pu, Hong Liu, Zhao Yifan, et al. Relationship between hyperuricemia and cardiovascular disease risk factors in a Chinese population: a cross-sectional study. Med Sci Monit, 2015, 12(21): 2707-2717.
|
4. |
何向阳, 刘峥, 徐英, 等. 肥胖与四种常见慢性病的相关性分析. 预防医学, 2020, 32(7): 692-697.
|
5. |
王天宇, 窦倩, 郭子坤, 等. 1947例体检人群高血压与高血糖和高尿酸血症及血脂异常关系分析. 社区医学杂志, 2020, 18(22): 1509-1511.
|
6. |
Lloyd-price J, Abu-ali G, Huttenhower C. The healthy human microbiome. Genome Med, 2016, 8(1): 51.
|
7. |
Guo Zhuang, Zhang Jiachao, Wang Zhanli, et al. Intestinal microbiota distinguish gout patients from healthy humans. Sci Rep, 2016, 6: 20602.
|
8. |
纪泽敏. 基于临床病例筛选高尿酸血症相关的肠道菌群. 北京: 中央民族大学, 2020.
|
9. |
Ning Yaogui, Yang Guomei, Chen Yangchun, et al. Characteristics of the urinary microbiome from patients with gout: a prospective study. Front Endocrinol (Lausanne), 2020, 11: 272.
|
10. |
Yu Yiran, Liu Qiuping, Li Haichang, et al. Alterations of the gut microbiome associated with the treatment of hyperuricemia in male rats. Fro Mic, 2018, 9: 2233.
|
11. |
任科雨, 勇春明, 金延春, 等. 青岛地区高尿酸血症患者的肠道菌群分析. 中国医师杂志, 2014, 16(12): 1649-1651.
|
12. |
孙玉萍, 陈邬锦, 梁美婷,等. 用于筛选肠道降解尿酸菌株的高尿酸培养基及其制备方法: CN112831448A. 2021-05-25.
|
13. |
Ma Quantao, Li Yaqi, Li Pengfei, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed Pharmacother, 2019, 117: 109138.
|
14. |
董文学, 蒋雅琼, 马利锋, 等. 肠道菌群对尿酸代谢的影响. 胃肠病学和肝病学杂志, 2021, 30(1): 55-59.
|
15. |
Liu Hong, Zhang Xiaomin, Wang Yanli, et al. Prevalence of hyperuricemia among Chinese adults: a national cross-sectional survey using multistage, stratified sampling. J Nephrol, 2014, 27: 653-658.
|
16. |
Browne H P, Forster S C, Anonye B O, et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature, 2016, 533(7604): 543-546.
|
17. |
Yu Yiran, Liu Qiuping, Li Haichang, et al. Alterations of the gut microbiome associated with the treatment of hyperuricaemia in male rats. Front Endocrinol, 2018, 9: 1-10.
|
18. |
Schultz A C, Nygaard P, Saxild H H. Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator. J Bacteriol, 2001, 183(11): 3293-3302.
|
19. |
Lee Y, Lee D H, Kho C W, et al. Transthyretin-related proteins function to facilitate the hydrolysis of 5-hydroxyisourate, the end product of the uricase reaction. FEBS Lett, 2005, 579: 4769-4774.
|
20. |
Guzmán K, Badia J, Giménez R, et al. Transcriptional regulation of the gene cluster encoding allantoinase and guanine deaminase in Klebsiella pneumoniae. J Bacteriol, 2011, 193(9): 2197-2207.
|
21. |
Iwadate Y, Kato J I. Identification of a formate-dependent uric acid degradation pathway in Escherichia coli. J Bacteriol, 2019, 201(11): e00573-18.
|
22. |
常宇骁. 人类肠道微生物培养组优化及肠道菌库构建与应用. 北京: 军事科学院, 2020.
|
23. |
Papakostas K, Frillingos S. Substrate selectivity of YgfU, a uric acid transporter from Escherichia coli. J Biol Chem, 2012, 287(19): 15684-15695.
|
24. |
王智. 抗高尿酸血症药物的研究进展. 中国城乡企业卫生, 2019, 34(5): 34-36.
|