1. |
Ball T, Demandt E, Mutschler I, et al. Movement related activity in the high gamma range of the human EEG. Neuroimage, 2008, 41(2): 302-310.
|
2. |
Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-computer interface technology: A review of the first international meeting. IEEE Trans Rehabil Eng, 2000, 8(2): 164-173.
|
3. |
Chaudhary U, Birbaumer N, Ramos M A. Brain–computer interfaces for communication and rehabilitation. Nat Rev Neurol, 2016, 12(9): 513.
|
4. |
Lotte F, Bougrain L, Cichocki A, et al. A review of classifification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng, 2018, 15(3): 031005.
|
5. |
Pichiorri F, Morone G, Petti M, et al. Brain-computer interface boosts motor imagery practice during stroke recovery: BCI and motor imagery. Ann Neurol, 2015, 77(5): 851-865.
|
6. |
Olivas-Padilla B E, Chacon-Murguia M I. Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Appl Soft Comput, 2019, 75: 461-472.
|
7. |
Raza H, Chowdhury A, Bhattacharyya S, et al. Single-trial EEG classification with EEGNet and neural structured learning for improving BCI performance// IEEE International Joint Conference on Neural Networks (IJCNN). Glasgow: IEEE, 2020: 1-8.
|
8. |
Thomas K P, Guan C, Lau C T, et al. A new discriminative common spatial pattern method for motor imagery brain–computer interfaces. IEEE T Bio-Med Eng, 2009, 56(11): 2730-2733.
|
9. |
王玉潇, 姜威, 刘治, 等. 基于共空间模式算法和支持向量机二重分类的癫痫发病预测. 生物医学工程学杂志, 2021, 38(1): 39-46.
|
10. |
孟明, 尹旭, 高云园, 等. 运动想象脑电的块选择共空间模式特征提取. 控制理论与应用, 2021, 38(3): 301-308.
|
11. |
Ang K K, Chin Z Y, Zhang H, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface// IEEE International Joint Conference on Neural Networks (IJSCNN). Hong Kong: IEEE, 2008: 2390-2397.
|
12. |
Zayyanu S, Li Q. Optimized DNN classification framework based on filter bank common spatial pattern (FBCSP) for motor- imagery-based BCI. Int J Comput Appl, 2020, 175(15): 16-25.
|
13. |
An X, Kuang D, Guo X, et al. A deep learning method for classification of EEG data based on motor imagery// International Conference on Intelligent Computing (ICIC). Taiyuan: Springer, 2014: 203-210.
|
14. |
褚亚奇, 朱波, 赵新刚, 等. 基于时空特征学习卷积神经网络的运动想象脑电解码方法. 生物医学工程学杂志, 2021, 38(1): 1-9.
|
15. |
Kim J, Park Y, Chung W. Transform based feature construction utilizing magnitude and phase for convolutional neural network in EEG signal classification// 2020 8th International Winter Conference on Brain-Computer Interface (BCI). Gangwon: IEEE, 2020: 1-4.
|
16. |
Wu Hao, Niu Yi, Li Fu, et al. A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification. Front Neurosci, 2019, 26(13): 1275.
|
17. |
Michielli N, Acharya U R, Molinari F. Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals. Comput Biol Med, 2019, 106: 71-81.
|
18. |
Wang P, Jiang A, Liu X, et al. LSTM-based EEG classification in motor imagery tasks. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(11): 2086-2095.
|
19. |
Sun Biao, Zhao Xing, Zhang Han, et al. EEG motor imagery classification with sparse spectrotemporal decomposition and deep learning. IEEE T Autom Sci Eng, 2020, 18(22): 541-551.
|
20. |
Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module// European Conference on Computer Vision (ECCV). Munich: Springer, 2018: 1-17.
|
21. |
Chollet F. Xception: Deep learning with depthwise separable convolutions// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 1800-1807.
|
22. |
Chaudhary S, Taran S, Bajaj V, et al. Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sens J, 2019, 19(12): 4494-4500.
|
23. |
Donoho D L. Compressed sensing. IEEE T Inform Theory, 2006, 52(4): 1289-1306.
|
24. |
Schamberg G, Ba D, Coleman T P. A modularized efficient framework for non-Markov time series estimation. IEEE T Signal Proces, 2018, 66(12): 3140-3154.
|
25. |
Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alter nating direction method of multipliers. Boston-Delft: Now Foundations and Trends, 2011.
|
26. |
Hu Yaohua, Li Chong, Meng Kaiwen, et al. Group sparse optimization via l (p), (q) regularization. J Mach Learn Res, 2017, 18(1): 960-1011.
|
27. |
Cao Yudong, Ding Yifei, Jia Minping, et al. A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings. Reliab Eng Syst Saf, 2021, 215: 107813.
|
28. |
Kingma D P, Ba J. Adam: a method for stochastic optimization// The 3rd International Conference on Learning Representations, San Diego, 2015. arXiv, 2015: 1412.6980.
|
29. |
Schirrmeister R T, Springenberg J T, Fiederer L D J, et al. Deeplearning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp, 2017, 38(11): 5391-5420.
|
30. |
Amin S U, Alsulaiman M, Muhammad G, et al. Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Future Gener Comput Syst, 2019, 101: 542-554.
|
31. |
Lawhern V J, Solon A J, Waytowich N R, et al. EEGNet: a compact convolutional neural network for EEG-based braincomputer interfaces. J Neural Eng, 2018, 15(5): 056013.1-056013.17.
|
32. |
何群, 杜硕, 张园园, 等. 融合单通道框架及多通道框架的运动想象分类. 仪器仪表学报, 2018, 39(9): 20-29.
|
33. |
张绍荣, 赵紫宁, 莫云, 等. 特征提取对通道选择方法的影响研究. 国外电子测量技术, 2020, 39(9): 1-6.
|