1. |
Sun Q, Zhou Z, Qiu N, et al. Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv Mater, 2017, 29(14): 1606628.
|
2. |
Cabral H, Miyata K, Osada K, et al. Block copolymer micelles in nanomedicine applications. Chem Rev, 2018, 118(14): 6844-6892.
|
3. |
Gothwal A, Khan I, Gupta U. Polymeric micelles: recent advancements in the delivery of anticancer drugs. Pharm Res, 2016, 33(1): 18-39.
|
4. |
Bresseleers J, Bagheri M, Storm G, et al. Scale-up of the manufacturing process to produce docetaxel-loaded mPEG-b-p(HPMA-Bz) block copolymer micelles for pharmaceutical applications. Org Process Res Dev, 2019, 23(12): 2707-2715.
|
5. |
Rajdev P, Ghosh S. Fluorescence resonance energy transfer (FRET): a powerful tool for probing amphiphilic polymer aggregates and supramolecular polymers. J Phys Chem B, 2018, 123(2): 327-342.
|
6. |
Owen S C, Chan D, Shoichet M S. Polymeric micelle stability. Nano Today, 2012, 7(1): 53-65.
|
7. |
Jette K K, Law D, Schmitt E A, et al. Preparation and drug loading of poly(ethylene glycol)-block-poly(ε-caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharm Res, 2004, 21(7): 1184-1191.
|
8. |
Xie M, Wang S, Singh A, et al. Fluorophore exchange kinetics in block copolymer micelles with varying solvent-fluorophore and solvent-polymer interactions. Soft Matter, 2016, 12(29): 6196-6205.
|
9. |
Mi A, Nm A, Mrb C, et al. Recent advances in FRET-Based biosensors for biomedical applications. Anal Biochem, 2021, 630: 114323.
|
10. |
Quast R B Margeat E. Studying GPCR conformational dynamics by single molecule fluorescence. Mol Cell Endocrinol, 2019, 493(4): 110469.
|
11. |
Sanders J C Holmstrom E D. Integrating single-molecule FRET and biomolecular simulations to study diverse interactions between nucleic acids and proteins. Essays Biochem, 2021, 65(1): 37-49.
|
12. |
Wu L L, Huang C S, Emery B, et al. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem Soc Rev, 2020, 49(15): 5110-5139.
|
13. |
Zhang X, Hu Y, Yang X, et al. Förster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens Bioelectron, 2019, 138: 111314.
|
14. |
Charron D M, Zheng Gang. Nanomedicine development guided by FRET imaging. Nano Today, 2018, 18: 124-136.
|
15. |
Chen T, Li C, Li Y, et al. Oral delivery of a nanocrystal formulation of schisantherin a with improved bioavailability and brain delivery for the treatment of parkinson's disease. Mol Pharm, 2016, 13(11): 3864-3875.
|
16. |
Deal J, Pleshinger D J, Johnson S C, et al. Milestones in the development and implementation of FRET-based sensors of intracellular signals: a biological perspective of the history of FRET. Cell Signal, 2020, 75: 109769.
|
17. |
Saini S, Singh H, Bagchi B. Fluorescence resonance energy transfer (FRET) in chemistry and biology: Non-Förster distance dependence of the FRET rate. J Chem Sci, 2006, 118(1): 23-35.
|
18. |
Castellani C M, Torres-Ocampo A P, Breffke J, et al. Live-cell FLIM-FRET using a commercially available system. Method Cell Biol, 2020, 158: 63-89.
|
19. |
Bryce B, Wang E, Zhang S, et al. A guide to fluorescent protein FRET pairs. Sensors-Basel, 2016, 16(9): 1488.
|
20. |
Wen L, Fan Z, Mikulski Z, et al. Imaging of the immune system - towards a subcellular and molecular understanding. J Cell Sci, 2020, 133(5): jcs234922.
|
21. |
Lu M. Single-molecule FRET imaging of virus spike–host interactions. Viruses, 2021, 13(2): 332.
|
22. |
Choi J H, Ha T, Shin M, et al. Nanomaterial-based fluorescence resonance energy transfer (FRET) and metal-enhanced fluorescence (MEF) to detect nucleic acid in cancer diagnosis. Biomedicines, 2021, 9(8): 928.
|
23. |
Dmitriev R I, Intes X, Barroso M M. Luminescence lifetime imaging of three-dimensional biological objects. J Cell Sci, 2021, 134(9): 1-17.
|
24. |
Hwang K, Mou Q, Lake R J, et al. Metal-dependent DNAzymes for the quantitative detection of metal ions in living cells: recent progress, current challenges, and latest results on FRET ratiometric sensors. IInorg Chem, 2019, 58(20): 13696-13708.
|
25. |
Irvine D J, Dane E L. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol, 2020, 20(5): 321-334.
|
26. |
Corby M J, Raicu V, Frick D N. New techniques to study intracellular receptors in living cells: insights into RIG-I-Like receptor signaling. Adv Exp Med Biol, 2018, 111: 219-240.
|
27. |
Patra J K, Das G, Fraceto L F, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol, 2018, 16(1): 71.
|
28. |
Lu M, Ma X, Mothes W. Illuminating the virus life cycle with single-molecule FRET imaging. Adv Virus Res, 2019, 105: 239-273.
|
29. |
Ruan Z, Liu L, Fu L, et al. An amphiphilic block copolymer conjugated with carborane and a NIR fluorescent probe for potential imaging-guided BNCT therapy. Polym Chem, 2016, 7: 4411-4418.
|
30. |
Zhao Y, Schapotschnikow P, Skajaa T, et al. Probing lipid coating dynamics of quantum dot core micelles via forster resonance energy transfer. Small, 2014, 10(6): 1163-1170.
|
31. |
Dan K, Rajdev P, Deb J, et al. Remarkably stable amphiphilic random copolymer assemblies: a structure-property relationship study. J Polym Sci Pol Chem, 2013, 51(22): 4932-4943.
|
32. |
Hao N, Sun C, Wu Z, et al. Fabrication of polymeric micelles with aggregation-induced emission and forster resonance energy transfer for anticancer drug delivery. Bioconjug Chem, 2017, 28(7): 1944-1954.
|
33. |
Usama S M, Thompson T, Burgess K. Productive manipulation of cyanine dye π-networks. Angew. Chem Int Ed, 2019, 58(27): 8974-8976.
|
34. |
Garcia-Amorós J, Tang S, Zhang Y, et al. Self-assembling nanoparticles of amphiphilic polymers for in vitro and in vivo FRET imaging. Top Curr Chem, 2016, 370: 29-59.
|
35. |
Wei Xuan, Dong Ruijiao, Wang Dali, et al. Supramolecular fluorescent nanoparticles constructed via multiple non-covalent interactions for the detection of hydrogen peroxide in cancer cells. Chem Eur J, 2015, 21(32): 11427-11434.
|
36. |
Li Y, Miao X, Chen T, et al. Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers. Colloids Surf B, 2017, 156: 227-235.
|
37. |
Liang Y Y, Zhang J, Cui H, et al. Fluorescence resonance energy transfer (FRET)-based nanoarchitecture for monitoring deubiquitinating enzyme activity. Chem Comm, 2020, 56(21): 3183-3186.
|
38. |
Tao Jinsong, Wei Zhengjie, He Yuan, et al. Toward understanding the prolonged circulation and elimination mechanism of crosslinked polymeric micelles in zebrafish model. Biomaterials, 2020, 256: 120180.
|
39. |
钱慧敏, 陈海燕, 王旻, 等. 近红外标记技术在生物医药领域的应用. 药物生物技术, 2006, 13(4): 306-309.
|
40. |
Widengren J, Schwille P. Characterization of photoinduced isomerization and back-isomerization of the cyanine dye cy5 by fluorescence correlation spectroscopy. J Phys Chem, 2000, 104(27): 6416-6428.
|
41. |
Mishra A, Behera R K, Behera P K, et al. Cyanines during the 1990s: a review. Chem Rev, 2000, 100(6): 1973-2012.
|
42. |
Luo S, Zhang E, Su Y, et al. A review of NIR dyes in cancer targeting and imaging. Biomaterials, 2011, 32(29): 7127-7138.
|
43. |
Fu L, Yuan P, Ruan Z, et al. Ultra-pH-sensitive polypeptide micelles with large fluorescence off/on ratio in near infrared range. Polym Chem, 2016, 8(6): 1028-1038.
|
44. |
Ruan Z, Yuan P, Li T, et al. Glutathione triggered near infrared fluorescence imaging-guided chemotherapy by cyanine conjugated polypeptide. ACS Biomater Sci Eng, 2018, 4(12): 4208-4218.
|
45. |
Liang Y, Huo Q, Lu W, et al. Fluorescence resonance energy transfer visualization of molecular delivery from polymeric micelles. J Biomed Nanotechnol, 2018, 14(7): 1308-1316.
|
46. |
Saqr A, Vakili M R, Huang Y H, et al. Development of traceable rituximab-modified PEO-polyester micelles by postinsertion of PEG-phospholipids for targeting of B-cell lymphoma. ACS Omega, 2019, 4(20): 18867-18879.
|
47. |
Gupta M K, Meyer T A, Nelson C E, et al. Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. J Control Release, 2012, 162(3): 591-598.
|
48. |
李瑞, 宋晓宁, 张华, 等. FRET 技术研究 PEG-PCL 胶束跨 MDCK 细胞单层转运的完整性. 药学学报, 2016, 51(8): 1316-1324.
|
49. |
Zhou Y, Wang Z, Wang Y, et al. Azoreductase-triggered fluorescent nanoprobe synthesized by RAFT-mediated polymerization-induced self-assembly for drug release. Polym Chem, 2020, 11(35): 5619-5629.
|
50. |
Yang J, Zhang R, Radford D C, et al. FRET-trackable biodegradable HPMA copolymer-epirubicin conjugates for ovarian carcinoma therapy. J Control Release, 2015, 218: 36-44.
|
51. |
Zhang R, Yang J, Sima M, et al. Sequential combination therapy of ovarian cancer with degradable N-(2-hydroxypropyl) methacrylamide copolymer paclitaxel and gemcitabine conjugates. P Natl Acad Sci USA, 2014, 111(33): 12181-12186.
|
52. |
Wang X, Li J, Yan Q, et al. In situ probing intracellular drug release from redox-responsive micelles by united FRET and AIE. Macromol Biosci, 2018, 18(3): 1700339.
|
53. |
Miteva M, Kirkbride K C, Kilchrist K V, et al. Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials, 2015, 38: 97-107.
|
54. |
Chen T, Li Y, Li C, et al. Pluronic P85/F68 micelles of baicalein could interfere with mitochondria to overcome MRP2-mediated efflux and offer improved anti-parkinsonian activity. Mol Pharm, 2017, 14(10): 3331-3342.
|
55. |
Chen K J, Chiu Y L, Chen Y M, et al. Intracellularly monitoring/imaging the release of doxorubicin from pH-responsive nanoparticles using Förster resonance energy transfer. Biomaterials, 2011, 32(10): 2586-2592.
|
56. |
Tuyen Dao T P, Brûlet A, Fernandes F, et al. Mixing block copolymers with phospholipids at the nanoscale: from hybrid polymer/lipid worm-like micelles to vesicles presenting lipid nano-domains. Langmuir, 2017, 33(7): 1705-1715.
|
57. |
Liu Y, Yang G, Jin S, et al. J-aggregate-based FRET monitoring of drug release from polymer nanoparticles with high drug loading. Angew Chem Int Ed, 2020, 59(45): 20065-20074.
|
58. |
Zhang Houbing, Li Hongjun, Cao Zhiting, et al. Investigation of the in vivo integrity of polymeric micelles via large Stokes shift fluorophore-based FRET. J Control Release, 2020, 324: 47-54.
|
59. |
Zhao Y M, Fay F, Hak S, et al. Augmenting drug-carrier compatibility improves tumour nanotherapy efficacy. Nat Commun, 2016, 7: 1-11.
|
60. |
Stirland D L, Nichols J W, Miura S, et al. Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice. J Control Release, 2013, 172(3): 1045-1064.
|
61. |
Park I H, Sohn J H, Kim S B, et al. An open-label, randomized, parallel, phase III trial Evaluating the efficacy and safety of polymeric micelle-formulated paclitaxel compared to conventional cremophor EL-based paclitaxel for recurrent or metastatic HER2-negative breast cancer. Cancer Res Treat, 2017, 49(3): 569-577.
|
62. |
Eetezadi S, Ekdawi S N, Allen C. The challenges facing block copolymer micelles for cancer therapy: in vivo barriers and clinical translation. Adv Drug Deliv Rev, 2015, 91: 7-22.
|
63. |
Chen T, Li C, Li Y, et al. Small-sized mPEG-PLGA nanoparticles of schisantherin a with sustained release for enhanced brain uptake and anti-parkinsonian activity. ACS Appl Mater Interfaces, 2017, 9(11): 9516-9527.
|
64. |
Morton S W, Zhao X, Quadir M A, et al. FRET-enabled biological characterization of polymeric micelles. Biomaterials, 2014, 35(11): 3489-3496.
|
65. |
Hsiao F, Huang P Y, Aoyagi T, et al. In vitro and in vivo assessment of delivery of hydrophobic molecules and plasmid DNAs with PEO–PPO–PEO polymeric micelles on cornea. J Food Drug Anal, 2018, 26(2): 869-878.
|
66. |
Gartzia-Rivero L, Cerdán L, Bañuelos J, et al. Förster resonance energy transfer and laser efficiency in colloidal suspensions of dye-doped nanoparticles: concentration effects. J Phys Chem C, 2014, 118(24): 13107-13117.
|
67. |
Sun X, Wang G, Hao Z, et al. The blood clearance kinetics and pathway of polymeric micelles in cancer drug delivery. Acs Nano, 2018, 12(6): 6179-6192.
|