1. |
Mozaffarian D, Benjamin E J, Go A S, et al. Executive summary: heart disease and stroke statistics——2016 update: a report from the American heart association. Circulation, 2016, 133(4): 447-454..
|
2. |
Savino K, Ambrosio G. Handheld ultrasound and focused cardiovascular echography: Use and information. Medicina, 2019, 55(8): 423..
|
3. |
Liang H, Lukkarinen S, Hartimo I. Heart sound segmentation algorithm based on heart sound envelogram. Comput Cardiol, 1997, 24: 105..
|
4. |
Boutana D, Benidir M, Barkat B. Segmentation and time-frequency analysis of pathological heart sound signals using the EMD method//22nd European Signal Processing Conference (EUSIPCO), Lisbon: IEEE, 2014: 1437-1441..
|
5. |
Schmidt S E, Holst-Hansen C, Graff C, et al. Segmentation of heart sound recordings by a duration dependent hidden Markov model. Physiol Meas, 2010, 31(4): 513-529..
|
6. |
Springer D B, Tarassenko L, Clifford G D. Logistic regression-HSMM-based heart sound segmentation. IEE Trans Biomed Eng, 2016, 63(4): 822-832..
|
7. |
Messner E, Zohrer M, Pernkopf F. Heart sound segmentation: an event detection approach using deep recurrent neural networks. IEEE Trans Biomed Eng, 2018, 65(9): 1964-1974..
|
8. |
Potes C, Parvaneh S, Rahman A, et al. Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds// 2016 Computing in Cardiology Conference (CinC), Vancouver, Canada: IEEE, 2016: 621-624..
|
9. |
Chen J F, Dang X. Heart sound analysis based on extended features and related factors//2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China: IEEE, 2019: 2189-2194..
|
10. |
Oztavli E, Aptoula E. Effect of early and late fusion on heart sound classification//2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir: IEEE, 2018: 1-4..
|
11. |
Yadav A, Dutta M K, Travieso C M, et al. Automatic classification of normal and abnormal PCG recording heart sound recording using fourier transform//2018 IEEE International Work Conference on Bioinspired Intelligence, San Carlos, Costa Rica: IEEE, 2018: 1-9..
|
12. |
Upretee P, Yüksel M E. Accurate classification of heart sounds for disease diagnosis by a single time-varying spectral feature: preliminary results//2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science, Istanbul, Turkey: IEEE, 2019: 1-4..
|
13. |
Krishnan P T, Balasubramanian P, Umapathy S. Automated heart sound classification system from unsegmented phonocardiogram (PCG) using deep neural network. Phys Eng Sci Med, 2020, 43(2): 505-515..
|
14. |
Meintjes A, Lowe A, Legget M. Fundamental heart sound classification using the continuous wavelet transform and convolutional neural networks//2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, USA: IEEE, 2018: 409-412..
|
15. |
Noman F, Ting C M, Salleh S H, et al. Short-segment heart sound classification using an ensemble of deep convolutional neural networks//2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK: IEEE, 2019: 1318-1322..
|
16. |
Singh S A, Majumder S, Mishra M. Classification of short unsegmented heart sound based on deep learning//2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand: IEEE, 2019: 1-6..
|
17. |
Li J, Ke L, Du Q. Classification of heart sounds based on the wavelet fractal and twin support vector machine. Entropy, 2019, 21(5): 472..
|
18. |
Liu C, Springer D, Li Q, et al. An open access database for the evaluation of heart sound algorithms. Physiol Meas, 2016, 37(12): 2181-2213..
|
19. |
Fatemeh S, Asri R A R. RenyiBS: Renyi entropy basis selection from wavelet packet decomposition tree for phonocardiogram classification. J Supercomput, 2021, 77: 3710-3726..
|
20. |
Zheng Y N, Guo X M, Ding X R. A novel hybrid energy fraction and entropy-based approach for systolic heart murmurs identification. Expert Syst Appl, 2015, 42: 2710-2721..
|
21. |
Li J H, Ke L, Du Q, et al. Heart sound signal classification algorithm: a combination of wavelet scattering transform and twin support vector machine. IEEE Access, 2019, 7: 179339-179348..
|
22. |
Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol, 2005, 3(2): 185-205..
|
23. |
Ghosh S K, Ponnalagu R N, Tripathy R K, et al. Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals. Comput Biol Med, 2020, 118: 103632..
|
24. |
Claussen C D, Miller S, Fenchel M, et.al. 心脏影像学. 北京: 人民卫生出版社, 2015: 57-94..
|
25. |
曹林生, 王朝晖, 王祥, 等. 心脏瓣膜病学. 北京: 科学技术文献出版社, 2002: 60-242..
|
26. |
李治安, 杨娅. 超声心动图指南. 北京: 人民军医出版社, 2010: 70-112..
|
27. |
Yaseen, Son G Y, Kwon S. Classification of heart sound signal using multiple features. Appl Sci, 2018, 8(12): 2344..
|
28. |
Barua P D, Karasu M, Kobat M A, et al. An accurate valvular heart disorders detection model based on a new dual symmetric tree pattern using stethoscope sounds. Comput Biol Med, 2022, 146: 105599..
|
29. |
Bentley P J, Nordehn G, Coimbra M, et.al. The PASCAL classifying heart sounds challenge 2011. (2011-11-01) [2021-12-01]. http: //www.peterjbentley.com/heartchallenge/..
|