1. |
Harrer S, Shah P, Antony B, et al. Artificial intelligence for clinical trial design. Trends Pharmacol Sci, 2019, 40(8): 577-591.
|
2. |
Wang H, Brown P C, Chow E C Y, et al. 3D cell culture models: drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci, 2021, 14(5): 1659-1680.
|
3. |
Plagenhoef M R, Callahan P M, Beck W D, et al. Aged rhesus monkeys: cognitive performance categorizations and preclinical drug testing. Neuropharmacology, 2021, 187: 108489.
|
4. |
Wu L, Wu D, Chen J, et al. Intranasal salvinorin a improves neurological outcome in rhesus monkey ischemic stroke model using autologous blood clot. J Cereb Blood Flow Metab, 2021, 41(4): 723-730.
|
5. |
童安炀, 唐超, 王文剑. 基于双流网络与支持向量机融合的人体行为识别. 模式识别与人工智能, 2021, 34(9): 863-870.
|
6. |
Klaser A, Marszałek M, Schmid C. A spatio-temporal descriptor based on 3D-gradients//19th British Machine Vision Conference (BMVC), Leeds: British Machine Vision Association, 2008, 275: 1-10.
|
7. |
Laptev I, Marszalek M, Schmid C, et al. Learning realistic human actions from movies//IEEE Conference on Computer Vision and Pattern Recognition, Alaska: IEEE, 2008. DOI: 10.1109/CVPR.2008.4587756.
|
8. |
Dalal N, Triggs B, Schmid C. Human detection using oriented histograms of flow and appearance//European Conference on Computer Vision, Graz: IEEE, 2006: 428-441.
|
9. |
Messing R, Pal C, Kautz H. Activity recognition using the velocity histories of tracked keypoints//2009 IEEE 12th International Conference on Computer Vision, Kyoto: IEEE, 2009: 104-111.
|
10. |
Wang H, Klser A, Schmid C, et al. Dense trajectories and motion boundary descriptors for action recognition. International Journal of Computer Vision, 2013, 103(1): 60-79.
|
11. |
周波, 李俊峰. 结合目标检测的人体行为识别. 自动化学报, 2020, 46(9): 1961-1970.
|
12. |
Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos//Advances in Neural Information Processing Systems, Montreal: IEEE, 2014: 568-576.
|
13. |
Liu P, Lyu M, King I, et al. Selflow: self-supervised learning of optical flow//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, California: IEEE, 2019: 4571-4580.
|
14. |
Tran D, Bourdev L, Fergus R. Learning spatiotemporal features with 3D convolutional networks//Proceedings of the IEEE International Conference on Computer Vision, Santiago: IEEE, 2015: 4489-4497.
|
15. |
Christoph R, Pinz F A. Spatiotemporal residual networks for video action recognition//Advances in Neural Information Processing Systems, Barcelona: IEEE, 2016: 3468-3476.
|
16. |
He K, Zhang X, Ren S. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas: IEEE, 2016: 770-778.
|
17. |
Donahue J, Anne Hendricks L, Guadarrama S, et al. Long-term recurrent convolutional networks for visual recognition and description//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas: IEEE, 2015: 2625-2634.
|
18. |
Feichtenhofer C, Fan H, Malik J. SlowFast networks for video recognition//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul: IEEE, 2019: 6202-6211.
|
19. |
Li D, Zhang K, Li Z, et al. A spatiotemporal convolutional network for multi-behavior recognition of pigs. Sensors (Basel), 2020, 20(8): 2381-2399.
|
20. |
Li C, Zhong Q, Xie D, et al. Skeleton-based action recognition with convolutional neural networks//2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Hong Kong: IEEE, 2017: 597-600.
|
21. |
Girdhar R, Carreira J, Doersch C, et al. Video action transformer network//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, California: IEEE, 2019: 244-253.
|
22. |
Vaswani A, Shazeer N, Parmar N. Attention is all you need//Advances in Neural Information Processing Systems, California: IEEE, 2017: 5998-6008.
|
23. |
Tao L, Wang X, Yamasaki T. Motion representation using residual frames with 3D CNN//IEEE International Conference on Image Processing, Abu Dhabi: IEEE, 2020: 1786-1790.
|
24. |
Bala P C, Eisenreich B R, Yoo S B M, et al. Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio. Nat Commun, 2020, 11(1): 4560.
|
25. |
Tang D H, Wang C Y, Huang X, et al. Inosine induces acute hyperuricaemia in rhesus monkey (Macaca mulatta) as a potential disease animal model. Pharmaceutical Biology, 2021, 59(1): 175-182.
|
26. |
Carreira J, Zisserman A. Quo vadis, action recognition? a new model and the kinetics dataset//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Venice: IEEE, 2017: 6299-6308.
|
27. |
Tran D, Wang H, Torresani L, et al. A closer look at spatiotemporal convolutions for action recognition//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Salt Lake City and UT: IEEE, 2018: 6450-6459.
|
28. |
Wang L, Xiong Y, Wang Z, et al. Temporal segment networks: towards good practices for deep action recognition//European Conference on Computer Vision, Amsterdam: IEEE, 2016: 20-36.
|
29. |
Bertasius G, Wang H, Torresani L. Is space-time attention all you need for video understanding//International Conference on Machine Learning (ICMC), 2021. arXiv: 2102.05095.
|