1. |
Zheng J Z, Gao L F, Zhuo W H, et al. A trend study on radiodiagnosis and radiotherapy and radiological protection for medical exposure in Shanghai. Radiat Prot, 2014, 34(5): 265-273.
|
2. |
林茂松, 蔡勇, 王金诺. 基于组件技术的MCNP三维可视化平台模型研究. 计算机应用研究, 2007(2): 225-226.
|
3. |
Hassan A I, Skalej M, Schlattl H, et al. Determination and verification of the x-ray spectrum of a CT scanner. J Med Imaging, 2018, 5(1): 1-15.
|
4. |
Gu J, Bednarz B, Caracappa P F, et al. The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations. Phys Med Biol, 2009, 54(9): 2699-2717.
|
5. |
Pan Y, Qiu R, Gao L, et al. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation. Phys Med Biol, 2014, 59(18): 5243-5260.
|
6. |
Caon M, Bibbo G, Pattison J. An EGS4-ready tomographic computational model of a 14-year-old female torso for calculating organ doses from CT examinations. Phys Med Biol, 1999, 44(9): 2213-2225.
|
7. |
Khursheed A, Hillier M C, Shrimpton P C, et al. Influence of patient age on normalized effective doses calculated for CT examinations. Br J Radiol, 2002, 75(898): 819-830.
|
8. |
Jarry G, DeMarco J J, Beifuss U, et al. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models. Phys Med Biol, 2003, 48(16): 2645-2663.
|
9. |
Turner A C, Zankl M, DeMarco J J, et al. The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: Using CTDIvol to account for differences between scanners. Med Phys, 2010, 37(4): 1816-1825.
|
10. |
Boone J M. Method for evaluating bow tie filter angle-dependent attenuation in CT: theory and simulation results. Med Phys, 2010, 37(1): 40-48.
|
11. |
Schwarz R A, Carter L L. Current state of Monte Carlo visualization tools// Kling A, Baräo F J C, Nakagawa M, et al. Advanced Monte Carlo for radiation physics, particle transport simulation and applications. Berlin, Heidelberg: Springer, 2000: 815-819.
|
12. |
李春艳, 李君利, 程建平, 等. MCNP可视化输入程序的开发. 清华大学学报(自然科学版), 2007(S1): 1089-1092.
|
13. |
Theis C, Bucheger K, Brugger M, et al. Interactive three dimensional visualization and creation of geometries for Monter Carlo calculation. Nucl Instrum Methods, 2006, 562(2): 827-829.
|
14. |
Theis C, Bucheger K, Feld G, et al. Simple Geo-New developments in the interactive creation and geometries for Monte Carlo simulations. Nucl Sci Tech, 2011, 2: 587-590.
|
15. |
朱晓林, 蔡勇, 张建生. CSG模型到MCNP几何模型转换算法的研究与实现. 现代计算机, 2012, 8: 9-12.
|
16. |
Li Y, Lu L, Ding A, et al. Benchmarking of MCAM 4. 0 with the ITER 3D model. Fusion Eng Des, 2007, 82(15-24): 2861-2866.
|
17. |
罗月童, 樊晓. 基于面壳封闭的B-Rep到CSG转换算法. 计算机辅助设计与图形学学报, 2014, 26(10): 1673-1680.
|
18. |
吴斌, 俞盛朋, 程梦云, 等. 反应堆中子学分析精准建模方法. 核科学与工程, 2016, 36(1): 72-76.
|
19. |
赵瑛峰, 刘检华, 武林林, 等. 基于特征分解的半空间构造实体几何模型转换算法. 计算机集成制造系统, 2021, 27(5): 1382-1389.
|
20. |
孙文军, 阎慧, 高永明. 基于MapleSim和LabVIEW的航天器姿态控制仿真研究. 计算机应用研究, 2011, 28(11): 4202-4205, 4218.
|
21. |
X-5 Monte Carlo Team. MCNP―A general Monte Carlo N-Particle transport code, version 5, Volume II: User’s Guide. Los Alamos: Los Alamos National Lab, 2003.
|
22. |
Rob R, Panoiu C. Using LabVIEW linx for creating 3d objects. IOP Conf Ser Mater Sci Eng, 2019, 477(1): 012027.
|
23. |
刘锋. 罗德里格斯旋转公式的证明及应用. 江苏科技信息, 2020, 37(28): 37-40.
|
24. |
丁爱平, 李莹, 卢磊, 等. 粒子输运计算模型MCNP模型的可视化实现. 原子核物理评论, 2006(2): 130-133.
|
25. |
Hubbell J H, Seltzer S M. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest. Gaithersburg: National Institute of Standards and Technology-PL, 1995.
|