1. |
Reyes D R, Iossifidis D, Auroux P A, et al. Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 2002, 74(12): 2623-2636.
|
2. |
Yager P, Edwards T, Fu E, et al. Microfluidic diagnostic technologies for global public health. Nature, 2006, 442(7101): 412-418.
|
3. |
El-Ali J, Sorger P K, Jensen K F. Cells on chips. Nature, 2006, 442(7101): 403-411.
|
4. |
DeMello A J. Control and detection of chemical reactions in microfluidic systems. Nature, 2006, 442(7101): 394-402.
|
5. |
Sackmann E K, Fulton A L, Beebe D J. The present and future role of microfluidics in biomedical research. Nature, 2014, 507(7491): 181-189.
|
6. |
Research and Markets. Microfluidic Device Systems - Global Market Trajectory & Analytics (2021-04) [2022-01-25]. https://www.researchandmarkets.com/reports/4806479/microfluidic-device-systems-global-market#rela4-5449009.
|
7. |
栾春娟, 侯海燕, 王贤文. 国际科技政策研究热点与前沿的可视化分析. 科学学研究, 2009, 27(2): 240-243.
|
8. |
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能. 科学学研究, 2015, 33(2): 242-253.
|
9. |
Lien K Y, Hung L Y, Huang T B, et al. Rapid detection of influenza A virus infection utilizing an immunomagnetic bead-based microfluidic system. Biosens Bioelectron, 2011, 26(9): 3900-3907.
|
10. |
Wu M H, Huang S B, Lee G B. Microfluidic cell culture systems for drug research. Lab Chip, 2010, 10(8): 939-956.
|
11. |
Su C H, Tsai M H, Lin C Y, et al. Dual aptamer assay for detection of Acinetobacter baumannii on an electromagnetically-driven microfluidic platform. Biosens Bioelectron, 2020, 159: 112148.
|
12. |
Nawar S, Stolaroff J K, Ye C, et al. Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. Lab Chip, 2020, 20(1): 147-154.
|
13. |
Lu H, Mutafopulos K, Heyman J A, et al. Rapid additive-free bacteria lysis using traveling surface acoustic waves in microfluidic channels. Lab Chip, 2019, 19(24): 4064-4070.
|
14. |
Klein A M, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell, 2015, 161(5): 1187-1201.
|
15. |
Chakraborty S. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Anal Chim Acta, 2007, 605(2): 175-184.
|
16. |
Chakraborty S. Electrokinetics with blood. Electrophoresis, 2019, 40(1): 180-189.
|
17. |
Virumbrales-Muñoz M, Ayuso J M, Gong M M, et al. Microfluidic lumen-based systems for advancing tubular organ modeling. Chem Soc Rev, 2020, 49(17): 6402-6442.
|
18. |
Nichol J W, Koshy S T, Bae H, et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010, 31(21): 5536-5544.
|
19. |
Sun W, Luo Z, Lee J, et al. Organ-on-a-chip for cancer and immune organs modeling. Adv Healthc Mater, 2019, 8(4): e1801363.
|
20. |
Nasiri R, Shamloo A, Ahadian S, et al. Microfluidic-based approaches in targeted cell/particle separation based on physical properties: Fundamentals and applications. Small, 2020, 16(29): e2000171.
|
21. |
Whitesides G M. The origins and the future of microfluidics. Nature, 2006, 442(7101): 368-373.
|
22. |
Teh S Y, Lin R, Hung L H, et al. Droplet microfluidics. Lab Chip, 2008, 8(2): 198-220.
|
23. |
Bhatia S N, Ingber D E. Microfluidic organs-on-chips. Nat Biotechnol, 2014, 32(8): 760-772.
|
24. |
Yetisen A K, Akram M S, Lowe C R. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip, 2013, 13(12): 2210-2251.
|
25. |
Martinez A W, Phillips S T, Wiley B J, et al. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip, 2008, 8(12): 2146-2150.
|
26. |
Chin C D, Linder V, Sia S K. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip, 2007, 7(1): 41-57.
|
27. |
Song H, Chen D L, Ismagilov R F. Reactions in droplets in microfluidic channels. Angew Chem Int Ed Engl, 2006, 45(44): 7336-7356.
|
28. |
Shang L, Cheng Y, Zhao Y. Emerging droplet microfluidics. Chem Rev, 2017, 117(12): 7964-8040.
|
29. |
Martinez A W, Phillips S T, Whitesides G M, et al. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem, 2010, 82(1): 3-10.
|
30. |
Cate D M, Adkins J A, Mettakoonpitak J, et al. Recent developments in paper-based microfluidic devices. Anal Chem, 2015, 87(1): 19-41.
|
31. |
Dittrich P S, Tachikawa K, Manz A. Micro total analysis systems. Latest advancements and trends. Anal Chem, 2006, 78(12): 3887-3908.
|
32. |
陈超瑜, 马妍, 方群. 微流控器官芯片的研究进展. 分析化学, 2019, 47(11): 1711-1720.
|
33. |
Emulate. Emulate endorses the FDA modernization act of 2021 (2021-12-07) [2022-01-25]. https: //emulatebio.com/fda-modernization-act/.
|
34. |
Si L L, Bai H Q, Rodas M, et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng, 2021, 5(8): 815-829.
|
35. |
Wang Y Q, Wang L, Zhu Y J, et al. Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip, 2018, 18(6): 851-860.
|
36. |
Park S E, Georgescu A, Huh D. Organoids-on-a-chip. Science, 2019, 364(6444): 960-965.
|
37. |
Sun F, Ganguli A, Nguyen J, et al. Smartphone-based multiplex 30-minute nucleic acid test of live virus from nasal swab extract. Lab Chip, 2020, 20(9): 1621-1627.
|
38. |
Chen C A, Yeh W S, Tsai T T, et al. Three-dimensional origami paper-based device for portable immunoassay applications. Lab Chip, 2019, 19(4): 598-607.
|
39. |
Li X, Qin Z, Fu H, et al. Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach. Biosens Bioelectron, 2021, 177: 112672.
|
40. |
Vogelstein B, Kinzler K W. Digital PCR. Proc Natl Acad Sci U S A, 1999, 96(16): 9236-9241.
|
41. |
Hao N J, Zhang J X J. Microfluidic screening of circulating tumor biomarkers toward liquid biopsy. Sep Purif Rev, 2018, 47(1): 19-48.
|
42. |
Zhang P, Zhou X, He M, et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng, 2019, 3(6): 438-451.
|
43. |
Miccio L, Cimmino F, Kurelac I, et al. Perspectives on liquid biopsy for label-free detection of "circulating tumor cells" through intelligent lab-on-chips. View, 2020, 1(3): 20200034.
|
44. |
唐曲, 胡文琪, 陈欢欢, 等. 微流控技术在循环肿瘤细胞异质性分析领域的应用. 中国科学: 化学, 2022, 52(1): 52-70.
|
45. |
Yu M, Xu L, Tian F, et al. Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers. Nat Commun, 2018, 9(1): 2607.
|
46. |
Cui P, Wang S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J Pharm Anal, 2019, 9(4): 238-247.
|
47. |
Miao L, Li L, Huang Y, et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat Biotechnol, 2019, 37(10): 1174-1185.
|
48. |
Battat S, Weitz D A, Whitesides G M. An outlook on microfluidics: the promise and the challenge. Lab Chip, 2022, 22(3): 530-536.
|