1. |
Crowley C, Wong J M, Fisher D M, et al. A systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects. Curr Stem Cell Res Ther, 2013, 8(3): 243-252.
|
2. |
Zhu W, Wang D, Xiong J, et al. Study on clinical application of nano-hydroxyapatite bone in bone defect repair. Artif Cells Nanomed Biotechnol, 2015, 43(6): 361-365.
|
3. |
Levingstone T J, Herbaj S, Dunne N J. Calcium phosphate nanoparticles for therapeutic applications in bone regeneration. Nanomaterials (Basel). 2019, 9(11): 1570.
|
4. |
Carbajal-De la Torre G, Zurita-Méndez N N, Ballesteros-Almanza M L, et al. Characterization and evaluation of composite biomaterial bioactive glass-polylactic acid for bone tissue engineering applications. Polymers (Basel), 2022, 14(15): 3034.
|
5. |
Zhang X, Zeng D, Li N, et al. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration. Sci Rep, 2016, 6: 19361.
|
6. |
Borden M, Westerlund L E, Lovric V, et al. Controlling the bone regeneration properties of bioactive glass: effect of particle shape and size. J Biomed Mater Res B Appl Biomater, 2022, 110(4): 910-922.
|
7. |
Xynos I D, Edgar A J, Buttery L D, et al. Gene-expression profiling of human osteoblasts following treatment with the ionic products of bioglass 45S5 dissolution. J Biomed Mater Res, 2001, 55(2): 151-157.
|
8. |
曹国定, 裴豫琦, 刘军, 等. 骨缺损修复材料的研究进展. 中国骨伤, 2021, 34(4): 382-388.
|
9. |
都笑非. 壳聚糖在生物医用高分子材料中的研究进展. 河南化工, 2021, 38(12): 5-6.
|
10. |
Hattori, K, Hayakawa, S. and Shirosaki, Y. Effects of the silicon-containing chemical species dissolved from chitosan–siloxane hybrids on nerve cells. J Sol-Gel Sci Technol, 2022, 104(3): 606-616.
|
11. |
El-Kady A M, Kamel N A, Elnashar M M, et al. Production of bioactive glass/chitosan scaffolds by freeze-gelation for optimized vancomycin delivery: effectiveness of glass presence on controlling the drug release kinetics. Journal of Drug Delivery Science and Technology, 2021, 66: 102779.
|
12. |
Oudadesse H, Najem S, Mosbahi S, et al. Development of hybrid scaffold: bioactive glass nanoparticles/chitosan for tissue engineering applications. J Biomed Mater Res A, 2021, 109(5): 590-599.
|
13. |
Sergi R, Bellucci D, Salvatori R, et al Chitosan-based bioactive glass gauze: microstructural properties, in vitro bioactivity, and biological tests. Materials (Basel), 2020, 13(12): 2819.
|
14. |
Zhang J, Lynch R J M, Watson T F, et al. Chitosan-bioglass complexes promote subsurface remineralisation of incipient human carious enamel lesions. J Dent, 2019, 84: 67-75.
|
15. |
Pei Y, Jordan K E, Xiang N, et al. Liquid-exfoliated mesostructured collagen from the bovine achilles tendon as building blocks of collagen membranes. ACS Appl Mater Interfaces, 2021, 13(2): 3186-3198.
|
16. |
Lin Z, Tao Y, Huang Y, et al. Applications of marine collagens in bone tissue engineering. Biomed Mater, 2021, 16(4): 042007.
|
17. |
Lee P S, Heinemann C, Zheng K, et al. The interplay of collagen/bioactive glass nanoparticle coatings and electrical stimulation regimes distinctly enhanced osteogenic differentiation of human mesenchymal stem cells. Acta Biomater, 2022, 149: 373-386.
|
18. |
Bellucci D, Salvatori R, Giannatiempo J, et al. A new bioactive glass/collagen hybrid composite for applications in dentistry. Materials (Basel), 2019, 12(13): 2079.
|
19. |
Ryan E J, Ryan A J, González-Vázquez A, et al. Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials, 2019, 197: 405-416.
|
20. |
Dhinasekaran D, Vimalraj S, Rajendran A R, et al. Bio-inspired multifunctional collagen/electrospun bioactive glass membranes for bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl, 2021, 126: 111856.
|
21. |
Kajave N S, Schmitt T, Nguyen T U, et al. Bioglass incorporated methacrylated collagen bioactive ink for 3D printing of bone tissue. Biomed Mater. 2021;16(3):10.1088/1748-605X/abc744.
|
22. |
程佳玲, 叶军, 王洪亮, 等.天然来源丝素蛋白的体内外降解性与生物相容性研究进展. 药学学报, 2022, 57(04): 1002-1009.
|
23. |
蔡佳丽, 陈菲菲, 蒋鸣谦, 等. 丝素蛋白在生物材料领域的应用. 广东蚕业, 2021, 55(3): 5-7.
|
24. |
Li G, Sun S. Silk fibroin-based biomaterials for tissue engineering applications. Molecules, 2022, 27(9): 2757.
|
25. |
Du X, Wei D, Huang L, et al. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109731.
|
26. |
Shen X, Yu P, Chen H, et al. Icariin controlled release on a silk fibroin/mesoporous bioactive glass nanoparticles scaffold for promoting stem cell osteogenic differentiation. RSC Adv, 2020, 10(20): 12105–12112.
|
27. |
Manissorn J, Wattanachai P, Tonsomboon K, et al. Osteogenic enhancement of silk fibroin-based bone scaffolds by forming hybrid composites with bioactive glass through GPTMS during sol-gel process. Materials Today Communications, 2020: 101730.
|
28. |
Bidgoli M R, Alemzadeh I, Tamjid E, et al. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: effect of particle size on physico-mechanical properties and in vitro cellular behavior. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109688.
|
29. |
Deng Y, Shavandi A, Okoro O V, et al. Alginate modification via click chemistry for biomedical applications. Carbohydr Polym, 2021, 270: 118360.
|
30. |
Gong W, Liu L, Luo L, et al. Preparation and characterization of a self-crosslinking sodium alginate-bioactive glass sponge. J Biomed Mater Res B Appl Biomater, 2023;111(1): 173-183.
|
31. |
范谊, 刘亚东, 崔宇韬, 等.天然及复合海藻酸盐水凝胶改性和构建复合体系修复骨缺损.中国组织工程研究, 2022, 26(28): 4532-4538.
|
32. |
Keshavarz M, Alizadeh P. On the role of alginate coating on the mechanical and biological properties of 58S bioactive glass scaffolds. Int J Biol Macromol, 2021, 167: 947-961.
|
33. |
Zhu Y, Ma Z, Kong L, et al. Modulation of macrophages by bioactive glass/sodium alginate hydrogel is crucial in skin regeneration enhancement. Biomaterials, 2020, 256: 120216.
|
34. |
Zhao Z, Liao Y, Kong D, et al. Microfluidic-assisted synthesis of Mg-containing bioactive glass nanosphere/alginate microsphere with controllable ion release process. Materials Letters, 2022, 306: 130891.
|
35. |
葛曼珍, 林建龙, 杨辉, 等. 金属增强生物玻璃陶瓷的研究状况及展望. 硅酸盐通报, 1996, 15(4): 44-48.
|
36. |
Choe Y E, Kim Y J, Jeon S J, et al. Investigating the mechanophysical and biological characteristics of therapeutic dental cement incorporating copper doped bioglass nanoparticles. Dent Mater, 2022,38(2): 363-375.
|
37. |
Rau J V, Curcio M, Raucci M G, et al. Cu-releasing bioactive glass coatings and their in vitro properties. ACS Appl Mater Interfaces, 2019, 11(6): 5812-5820.
|
38. |
Chang L, Liu Y, Wu C. Copper-doped mesoporous bioactive glass for photothermal enhanced chemotherapy. J Biomed Nanotechnol, 2018, 14(4): 786-794.
|
39. |
Almeida M M, Nani E P, Teixeira L N, et al. Strontium ranelate increases osteoblast activity. Tissue Cell, 2016, 48(3): 183-188.
|
40. |
严思, 苏广志, 周斌, 等. 含锶生物活性玻璃Stronbone成骨作用的体内外研究. 2019年中华口腔医学会口腔材料专业委员会第十四次全国口腔材料学术年会论文集, 中华口腔医学会口腔材料专业委员会, 2019: 2.
|
41. |
杨晶晶, 黄文燕, 赵雪丹, 等. 掺锶生物活性玻璃对乳牙牙髓干细胞成牙本质向分化作用的研究. 2019年中华口腔医学会口腔预防医学专业委员会第十九次全国学术年会资料汇编, 中华口腔医学会口腔预防医学专业委员会、中国国际科技交流中心, 2019: 1.
|
42. |
Naruphontjirakul P, Tsigkou O, Li S, et al. Human mesenchymal stem cells differentiate into an osteogenic lineage in presence of strontium containing bioactive glass nanoparticles. Acta Biomater, 2019, 90: 373-392.
|
43. |
Zhang X, Chen Q, Mao X. Magnesium enhances osteogenesis of BMSCs by tuning osteoimmunomodulation. Biomed Res Int, 2019, 2019: 7908205.
|
44. |
Dittler M L, Unalan I, Grünewald A, et al. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Colloids Surf B Biointerfaces, 2019, 182: 110346.
|
45. |
Bellucci D, Sola A, Cacciotti I, et al. Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: synthesis, microstructure and biological responsiveness. Mater Sci Eng C Mater Biol Appl, 2014, 42: 312-324.
|
46. |
Petretta M, Gambardella A, Boi M, et al. Composite scaffolds for bone tissue regeneration based on PCL and Mg-containing bioactive glasses. Biology (Basel), 2021, 10(5): 398.
|
47. |
Farag M M, Al-Rashidy Z M, Ahmed M M. In vitro drug release behavior of Ce-doped nano-bioactive glass carriers under oxidative stress. J Mater Sci Mater Med, 2019, 30(2): 18.
|
48. |
张青山. 纳米氧化钛、羟基磷灰石、氧化锌及氧化铈陶瓷材料的制备及性能研究. 山东: 青岛科技大学, 2008.
|
49. |
Westhauser F, Rehder F, Decker S, et al. Ionic dissolution products of Cerium-doped bioactive glass nanoparticles promote cellular osteogenic differentiation and extracellular matrix formation of human bone marrow derived mesenchymal stromal cells. Biomed Mater, 2021, 16(3). DOI: 10.1088/1748-605X/abcf5f.
|
50. |
Kurtuldu F, Mutlu N, Michálek M, et al. Cerium and gallium containing mesoporous bioactive glass nanoparticles for bone regeneration: bioactivity, biocompatibility and antibacterial activity. Mater Sci Eng C Mater Biol Appl, 2021, 124: 112050.
|
51. |
Zhang P, Yang K, Zhou Z, et al. Customized borosilicate bioglass scaffolds with excellent biodegradation and osteogenesis for mandible reconstruction. Front Bioeng Biotechnol, 2020, 8: 610284.
|
52. |
贾伟涛, 张欣, 黄文旵, 等. 抗生素缓释载体用硼酸盐玻璃/壳聚糖复合材料. 硅酸盐学报, 2010, 38(7): 1303-1309.
|
53. |
Shuai C, Xu Y, Feng P, et al. Hybridization of graphene oxide and mesoporous bioactive glass: micro-space network structure enhance polymer scaffold. J Mech Behav Biomed Mater, 2020, 109: 103827.
|
54. |
Wang W, Liu Y, Yang C, et al. Mesoporous bioactive glass combined with graphene oxide scaffolds for bone repair. Int J Biol Sci, 2019, 15(10): 2156-2169.
|
55. |
Yao Q, Liu H, Lin X, et al. 3D interpenetrated graphene foam/58S bioactive glass scaffolds for electrical-stimulation-assisted differentiation of rabbit mesenchymal stem cells to enhance bone regeneration. J Biomed Nanotechnol, 2019, 15(3): 602-611.
|
56. |
de Vasconcellos L M R, do Prado R F, Sartori E M, et al. In vitro osteogenesis process induced by hybrid nanohydroxyapatite/graphene nanoribbons composites. J Mater Sci Mater Med, 2019, 30(7): 81.
|