1. |
Chowdhary C L, Acharjya D P. Segmentation and feature extraction in medical imaging: a systematic review. Procedia Comput Sci, 2020, 167: 26-36.
|
2. |
Hesamian M H, Jia W, He X, et al. Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging, 2019, 32(4): 582-596.
|
3. |
吴玉超, 林岚, 王婧璇, 等. 基于卷积神经网络的语义分割在医学图像中的应用. 生物医学工程学杂志, 2020, 37(3): 533-540.
|
4. |
王玉丽, 赵子健. 基于深度学习的脑图像分割算法研究综述. 生物医学工程学杂志, 2020, 37(4): 721-729.
|
5. |
于宁波, 刘嘉男, 高丽, 等. 基于深度学习的膝关节MR影像自动分割方法. 仪器仪表学报, 2020, 41(6): 140-149.
|
6. |
Aslan M F, Unlersen M F, Sabanci K, et al. CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection. Appl Soft Comput, 2021, 98: 106912.
|
7. |
Torralba A, Efros A A. Unbiased look at dataset bias// CVPR 2011. Colorado Springs: IEEE, 2011: 1521-1528.
|
8. |
Guan H, Liu M. Domain adaptation for medical image analysis: a survey. IEEE Trans Biomed Eng, 2021, 69(3): 1173-1185.
|
9. |
Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A review. Med Image Anal, 2019, 58: 101552.
|
10. |
Patgiri R, Biswas A, Roy P. Health informatics: A computational perspective in healthcare. Berlin: Springer, 2021: 77-96.
|
11. |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM, 2020, 63(11): 139-144.
|
12. |
Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2223-2232.
|
13. |
Wollmann T, Eijkman C S, Rohr K. Adversarial domain adaptation to improve automatic breast cancer grading in lymph nodes// 2018 IEEE 15th International Symposium on Biomedical Imaging. Washington: IEEE, 2018: 582-585.
|
14. |
Hiasa Y, Otake Y, Takao M, et al. Cross-modality image synthesis from unpaired data using CycleGAN// Gooya A, Goksel O, Oguz I, et al. International workshop on simulation and synthesis in medical imaging. Cham: Springer, 2018: 31-41.
|
15. |
Liu F. SUSAN: segment unannotated image structure using adversarial network. Magn Reson Med, 2019, 81(5): 3330-3345.
|
16. |
Javanmardi M, Tasdizen T. Domain adaptation for biomedical image segmentation using adversarial training// 2018 IEEE 15th International Symposium on Biomedical Imaging. Washington: IEEE, 2018: 554-558.
|
17. |
Panfilov E, Tiulpin A, Klein S, et al. Improving robustness of deep learning based knee MRI segmentation: Mixup and adversarial domain adaptation// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Seoul: IEEE/CVF, 2019: 450-459.
|
18. |
Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning library. Adv Neural Inf Process Syst, 2019, 32: 1-12.
|
19. |
Razmjoo A, Caliva F, Lee J, et al. T2 analysis of the entire osteoarthritis initiative dataset. J Orthop Res, 2021, 39(1): 74-85.
|
20. |
Hayashi D, Roemer F W, Guermazi A. Magnetic resonance imaging assessment of knee osteoarthritis: current and developing new concepts and techniques. Clin Exp Rheumatol, 2019, 37(Suppl 120): 88-95.
|
21. |
Gao L, Ding K, Liu J, et al. Design and Development of A Knee Surgery Planning System// 2020 Chinese Control And Decision Conference (CCDC). Hefei: IEEE, 2020: 2053-2059.
|
22. |
Ambellan F, Tack A, Ehlke M, et al. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative. Med Image Anal, 2019, 52: 109-118.
|
23. |
Yushkevich P A, Gerig G. ITK-SNAP: an intractive medical image segmentation tool to meet the need for expert-guided segmentation of complex medical images. IEEE Pulse, 2017, 8(4): 54-57.
|
24. |
Cherry J M, Adler C, Ball C, et al. SGD: Saccharomyces genome database. Nucleic Acids Res, 1998, 26(1): 73-79.
|
25. |
Miyato T, Kataoka T, Koyama M, et al. Spectral normalization for generative adversarial networks. arXiv preprint arXiv: 2018: 1802.05957.
|
26. |
Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv: 2014: 1412.6980.
|
27. |
Ma J, Chen J, Ng M, et al. Loss odyssey in medical image segmentation. Med Image Anal, 2021, 71: 102035.
|