1. |
Helmich R C, Bloem B R. The impact of the COVID-19 pandemic on Parkinson’s disease: hidden sorrows and emerging opportunities. J Parkinson Dis, 2020, 10(2): 351-354.
|
2. |
Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053): 1545-1602.
|
3. |
Liu Y, Chen J, Hu C, et al. Vision-based method for automatic quantification of parkinsonian bradykinesia. IEEE T Neur Sys Reh, 2019, 27(10): 1952-1961.
|
4. |
Yang W, Hamilton J L, Kopil C, et al. Current and projected future economic burden of Parkinson’s disease in the US. NPJ Parkinsons Dis, 2020, 6(1): 15.
|
5. |
Bloem B R, Okun M S, Klein C. Parkinson’s disease. Lancet, 2021, 397(10291): 2284-2303.
|
6. |
Goetz C G, Tilley B C, Shaftman S R, et al. Movement Disorder Society‐sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS‐UPDRS): scale presentation and clinimetric testing results. Movement Disord, 2008, 23(15): 2129-2170.
|
7. |
Aich S, Pradhan P M, Park J, et al. A machine learning approach to distinguish Parkinson’s disease (PD) patient’s with shuffling gait from older adults based on gait signals using 3D motion analysis. Int J Eng Technol, 2018, 7(3.29): 153-156.
|
8. |
Slijepcevic D, Zeppelzauer M, Gorgas A M, et al. Automatic classification of functional gait disorders. IEEE J Biomed Health, 2017, 22(5): 1653-1661.
|
9. |
Reither L R, Foreman M H, Migotsky N, et al. Upper extremity movement reliability and validity of the Kinect version 2. Disabil Rehabil-Assi, 2018, 13(1): 54-59.
|
10. |
Zhu W, Anderson B, Zhu S, et al. A computer vision-based system for stride length estimation using a mobile phone camera// Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility. Reno: ACM, 2016: 121-130.
|
11. |
Nardo A, Anasetti F, Servello D, et al. Quantitative gait analysis in patients with Parkinson treated with deep brain stimulation: the effects of a robotic gait training. NeuroRehabilitation, 2014, 35(4): 779-788.
|
12. |
刘俊杰. 基于机器学习与步态分析的帕金森病患者定量评估与分类方法研究. 杭州: 杭州电子科技大学, 2021.
|
13. |
Greene B R, McGrath D, O’Neill R, et al. An adaptive gyroscope-based algorithm for temporal gait analysis. Med Biol Eng Comput, 2010, 48(12): 1251-1260.
|
14. |
Lima A L S, Smits T, Darweesh S K L, et al. Home-based monitoring of falls using wearable sensors in Parkinson’s disease. Movement Disord, 2020, 35(1): 109-115.
|
15. |
沈天毓, 王计平, 郭立泉, 等. 利用可穿戴设备对帕金森病患者运动功能进行量化评估. 生物医学工程学杂志, 2018, 35(2): 206-213.
|
16. |
朱业安, 徐唯祎, 王睿, 等. 偏瘫步态障碍的自动识别和分析. 生物医学工程学杂志, 2019, 36(2): 306-314.
|
17. |
Kim A, Kim J, Rietdyk S, et al. A wearable smartphone-enabled camera-based system for gait assessment. Gait Posture, 2015, 42(2): 138-144.
|
18. |
Gabel M, Gilad-Bachrach R, Renshaw E, et al. Full body gait analysis with Kinect// 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego: IEEE, 2012: 1964-1967.
|
19. |
Verlekar T T, Soares L D, Correia P L. Automatic classification of gait impairments using a markerless 2D video-based system. Sensors, 2018, 18(9): 2743.
|
20. |
Stenum J, Rossi C, Roemmich R T. Two-dimensional video-based analysis of human gait using pose estimation. PLoS Comput Biol, 2021, 17(4): e1008935.
|
21. |
Kanko R M, Laende E K, Strutzenberger G, et al. Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system. J Biomech, 2021, 122: 110414.
|
22. |
Romijnders R, Warmerdam E, Hansen C, et al. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson’s Disease patients. J Neuroeng Rehabil, 2021, 18(1): 28.
|
23. |
Jakob V, Küderle A, Kluge F, et al. Validation of a sensor-based gait analysis system with a gold-standard motion capture system in patients with Parkinson’s disease. Sensors, 2021, 21(22): 7680.
|
24. |
Veeraragavan S, Gopalai A A, Gouwanda D, et al. Parkinson’s disease diagnosis and severity assessment using ground reaction forces and neural networks. Front Physiol, 2020, 11: 587057.
|
25. |
Balaji E, Brindha D, Balakrishnan R. Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease. Appl Soft Comput, 2020, 94: 106494.
|
26. |
Bouten C V C, Koekkoek K T M, Verduin M, et al. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE T Bio-Med Eng, 1997, 44(3): 136-147.
|
27. |
Stuberg W A, Colerick V L, Blanke D J, et al. Comparison of a clinical gait analysis method using videography and temporal-distance measures with 16-mm cinematography. Phys Ther, 1988, 68(8): 1221-1225.
|
28. |
Lewek M D, Poole R, Johnson J, et al. Arm swing magnitude and asymmetry during gait in the early stages of Parkinson’s disease. Gait Posture, 2010, 31(2): 256-260.
|