1. |
Manzey D, Lorenz B, Schiewe A, et al. Behavioral aspects of human adaptation to space analyses of cognitive and psychomotor performance in space during an 8-day space mission. Clin Ooral Invest, 1993, 71(9): 725-731.
|
2. |
王峻, 白延强, 秦海波, 等. 空间站任务航天员心理问题及心理支持. 中国载人航天, 2012, 18(2): 68-74.
|
3. |
Alexander A A, Ole D, Jeffrey A, et al. Mice display learning and behavioral deficits after a 30-day spaceflight on Bion-M1 satellite. Behav Brain Res, 2021, 419(12): 113682.
|
4. |
Newberg A B. Changes in the central nervous system and their clinical correlates during long-term spaceflight. Aviat Space Environ Med, 1994, 65(6): 562-572.
|
5. |
林煜, 刘宗琳, 骞爱荣, 等. 一种模拟失重性骨丢失小鼠尾悬吊模型的建立. 航天医学与医学工程, 2012, 25(4): 239-242.
|
6. |
Wang Q, Zhang Y L, Li Y H, et al. The memory enhancement effect of Kai Xin San on cognitive deficit induced by simulated weightlessness in rats. J Ethnopharmacol, 2016, 187: 9-16.
|
7. |
Wu X R, Li D, Liu J L, et al. Dammarane sapogenins ameliorates neurocognitive functional impairment induced by simulated long-duration spaceflight. Front Pharmacol, 2017, 8: 315.
|
8. |
Frigeri A, Iacobas D A, Iacobas S, et al. Effect of microgravity on gene expression in mouse brain. Exp Brain Res, 2008, 191(3): 289-300.
|
9. |
Shang X L, Bo X, Li Q, et al. Neural oscillations as a bridge between glutamatergic system and emotional behaviors in simulated microgravity-induced mice. Behav Brain Res, 2017, 317: 286-291.
|
10. |
Rosa M A, Lisanby S H. Somatic treatments for mood disorders. Neuropsychopharmacol, 2012, 37(1): 102.
|
11. |
Nguyen J P, Suarez A, Kemoun G, et al. Repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease. Neurophysiol Clin, 2017, 47(1): 47-53.
|
12. |
董国亚, 汤志华, 韩婷彦, 等. 各向异性真实头模型下深部脑刺激电场分布. 电工技术学报, 2015(S2): 37-41.
|
13. |
李江涛, 曹辉, 郑敏军, 等. 多通道经颅磁刺激线圈阵列的驱动与控制. 电工技术学报, 2017, 32(22): 158-165.
|
14. |
Ahmed M A, Darwish E S, Khedr E M, et al. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. J Neurol, 2012, 259(1): 83-92.
|
15. |
Ziemann U, Müllerdahlhaus F. Metaplasticity in human cortex. Neuroentist, 2014, 21(2): 185.
|
16. |
Zhu H J, Xu G Z, Fu L D, et al. The effects of repetitive transcranial magnetic stimulation on the cognition and neuronal excitability of mice. Electromagn Biol Med, 2019, 39(1): 1-11.
|
17. |
Ma J, Wang J H, Lv C N, et al. The role of hippocampal structural synaptic plasticity in repetitive transcranial magnetic stimulation to improve cognitive function in male SAMP8 mice. Cell Physiol Biochem, 2017, 41(1): 137.
|
18. |
Xiang S T, Zhou Y, Fu J X, et al. rTMS pre-treatment effectively protects against cognitive and synaptic plasticity impairments induced by simulated microgravity in mice. Behav Brain Res, 2018, 359: 639-647.
|
19. |
Zhang X Q, Li L, Huo J T, et al. Effects of repetitive transcranial magnetic stimulation on cognitive function and cholinergic activity in the rat hippocampus after vascular dementia. Neural Regen Res, 2018, 13(8): 1384-1389.
|
20. |
Campanac E, Debanne D. Plasticity of neuronal excitability: Hebbian rules beyond the synapse. Arch Ital Biol, 2007, 145(3-4): 277.
|
21. |
Zhao Z G, Gu H G. Transitions between classes of neuronal excitability and bifurcations induced by autapse. Sci Rep, 2017, 7(1): 6760.
|
22. |
Zhai B H, Fu J X, Xiang S T, et al. Repetitive transcranial magnetic stimulation ameliorates recognition memory impairment induced by hindlimb unloading in mice associated with BDNF/TrkB signaling. Neurosci Res, 2020, 153: 40-47.
|
23. |
杨佳佳. 三聚氰胺对大鼠海马CA1区神经元兴奋性的影响及其机制的研究. 天津: 南开大学, 2011.
|
24. |
Ekberg J, Craik D J, Adams D J. Conotoxin modulation of voltage-gated sodium channels. Int J Biochem Cell Biol, 2008, 40(11): 2363-2368.
|
25. |
Luna V M, Anacker C, Burghardt N S, et al. Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus. Science, 2019, 364(6440): 578-583.
|
26. |
汪铭. 慢性铝暴露对大白鼠海马DG区突触可塑性的影响及药物防治的在位研究. 合肥: 中国科学技术大学, 2002.
|
27. |
Tan T, Xie J C, Tong Z Q, et al. Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons. Brain Res, 2013, 1520(3): 23-35.
|
28. |
朱海军, 丁冲, 徐桂芝. 膜片钳技术及其在神经科学研究中的应用. 生命科学研究杂志, 2017, 21(3): 251-256.
|
29. |
Nelson M T, Quayle J M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol, 1995, 268(4): C799-C822.
|
30. |
Liu Y H, Wang L N, Bian Y H, et al. Effect of repetitive transcranial magnetic stimulation with different frequency on cognitive function and behavioral and psychological symptoms in patients with senile dementia. Int J Psychiat, 2017, 2: 75-78.
|
31. |
Wang H L, Xian X H, Wang Y Y, et al. Chronic high-frequency repetitive transcranial magnetic stimulation improves age-related cognitive impairment in parallel with alterations in neuronal excitability and the voltage-dependent Ca2+ current in female mice. Neurobiol Learn Mem, 2015, 118: 1-7.
|
32. |
Dong Z F, Han H L, Wang Y T. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J Clin Invest, 2015, 125(1): 234-247.
|
33. |
Coetzee W A, Amarillo Y, Chiu J, et al. Molecular diversity of K+ channels. Ann N Y Acad Sci, 1999, 868(1): 233-285.
|