1. |
Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798): 270-273.
|
2. |
Ahmed S F, Quadeer A A, McKay M R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 2020, 12(3): 254.
|
3. |
Sahebnasagh A, Avan R, Saghafi F, et al. Pharmacological treatments of COVID-19. Pharmacol Rep, 2020, 72(6): 1446-1478.
|
4. |
Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med, 2020, 382(12): 1177-1179.
|
5. |
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020, 323(11): 1061-1069.
|
6. |
WHO Team. WHO Expert Meeting on Evaluation of Traditional Chinese Medicine in the Treatment of COVID-19. Geneva: WHO, 2022: 4-17.
|
7. |
Song C M, Lim S J, Tong J C. Recent advances in computer-aided drug design. Brief Bioinform, 2009, 10(5): 579-591.
|
8. |
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol, 2020, 92(4): 418-423.
|
9. |
Prajapat M, Sarma P, Shekhar N, et al. Drug targets for corona virus: A systematic review. Indian J Pharmacol, 2020, 52(1): 56-65.
|
10. |
国家卫生健康委办公厅. 新型冠状病毒肺炎诊疗方案(试行第九版). 传染病信息, 2022, 35(2): 97-106.
|
11. |
Trott O, Olson A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 2010, 31(2): 455-461.
|
12. |
Lindahl E R. Molecular dynamics simulations. Methods Mol Biol, 2008, 443: 3-23.
|
13. |
Fu L, Ye F, Feng Y, et al. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat Commun, 2020, 11(1): 4417.
|
14. |
Kang S, Yang M, Hong Z, et al. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B, 2020, 10(7): 1228-1238.
|
15. |
Juraszek J, Rutten L, Blokland S, et al. Stabilizing the closed SARS-CoV-2 spike trimer. Nat Commun, 2021, 12(1): 244.
|
16. |
Yin W, Luan X, Li Z, et al. Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin. Nat Struct Mol Biol, 2021, 28(3): 319-325.
|
17. |
Pettersen E F, Goddard T D, Huang C C, et al. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem, 2004, 25(13): 1605-1612.
|
18. |
Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem, 2005, 26(16): 1701-1718.
|
19. |
Khan F I, Lai D, Anwer R, et al. Identifying novel sphingosine kinase 1 inhibitors as therapeutics against breast cancer. J Enzyme Inhib Med Chem, 2020, 35(1): 172-186.
|
20. |
Hassan F, Khan F I, Song H, et al. Effects of reverse genetic mutations on the spectral and photochemical behavior of a photoactivatable fluorescent protein PAiRFP1. Spectrochim Acta A Mol Biomol Spectrosc, 2020, 228: 117807.
|
21. |
Durrani R, Khan F I, Ali S, et al. A thermolabile phospholipase B from Talaromyces marneffei GD-0079: biochemical characterization and structure dynamics study. Biomolecules, 2020, 10(2): 231.
|
22. |
Khan F I, Wei D Q, Gu K R, et al. Current updates on computer aided protein modeling and designing. Int J Biol Macromol, 2016, 85: 48-62.
|
23. |
Lipinski C A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol, 2004, 1(4): 337-341.
|
24. |
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep, 2017, 7: 42717.
|
25. |
Zhang L, Ai H, Chen W, et al. CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. Sci Rep, 2017, 7(1): 2118.
|
26. |
Gahlawat A, Kumar N, Kumar R, et al. Structure-based virtual screening to discover potential lead molecules for the SARS-CoV-2 main protease. J Chem Inf Model, 2020, 60(12): 5781-5793.
|
27. |
Peng Y, Du N, Lei Y, et al. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. EMBO J, 2020, 39(20): e105938.
|
28. |
Hu B, Guo H, Zhou P, et al. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol, 2021, 19(3): 141-154. Erratum in: Nat Rev Microbiol, 2022, 20(5): 315.
|
29. |
Yin W, Mao C, Luan X, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368(6498): 1499-1504.
|
30. |
Huang Y, Yang C, Xu X F, et al. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin, 2020, 41(9): 1141-1149.
|
31. |
Hatmal M M, Alshaer W, Al-Hatamleh M A I, et al. Comprehensive structural and molecular comparison of spike proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and their interactions with ACE2. Cells, 2020, 9(12): 2638.
|
32. |
Zhu W, Chen C Z, Gorshkov K, et al. RNA-dependent RNA polymerase as a target for COVID-19 drug discovery. SLAS Discov, 2020, 25(10): 1141-1151.
|