1. |
Spagnolo P, Kropski J A, Jones M G, et al. Idiopathic pulmonary fibrosis: disease mechanisms and drug development. Pharmacol Ther, 2021, 222: 107798.
|
2. |
Hadjicharalambous M R, Lindsay M A. Idiopathic pulmonary fibrosis: pathogenesis and the emerging role of long non-coding RNAs. Int J Mol Sci, 2020, 21(2): 524.
|
3. |
Zhang C, Zhu X, Hua Y, et al. YY1 mediates TGF-β1-induced EMT and pro-fibrogenesis in alveolar epithelial cells. Respir Res, 2019, 20(1): 249.
|
4. |
Marconi G D, Fonticoli L, Rajan T S, et al. Epithelial-mesenchymal transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis. Cells, 2021, 10(7): 1587.
|
5. |
Marmai C, Sutherland R E, Kim K K, et al. Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol, 2011, 301(1): L71-L78.
|
6. |
Hatipoglu O F, Uctepe E, Opoku G, et al. Osteopontin silencing attenuates bleomycin-induced murine pulmonary fibrosis by regulating epithelial-mesenchymal transition. Biomed Pharmacother, 2021, 139: 111633.
|
7. |
Salton F, Volpe M C, Confalonieri M. Epithelial-mesenchymal transition in the pathogenesis of idiopathic pulmonary fibrosis. Medicina (Kaunas), 2019, 55(4):83.
|
8. |
Brown A C, Fiore V F, Sulchek T A, et al. Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis-associated epithelial-to-mesenchymal transitions. J Pathol, 2013, 229(1): 25-35.
|
9. |
Leight J L, Wozniak M A, Chen S, et al. Matrix rigidity regulates a switch between TGF-β1–induced apoptosis and epithelial-mesenchymal transition. Mol Biol Cell, 2012, 23(5): 781-791.
|
10. |
Marchioni A, Tonelli R, Cerri S, et al. Pulmonary stretch and lung mechanotransduction: implications for progression in the fibrotic lung. Int J Mol Sci, 2021, 22(12): 6443.
|
11. |
Deng Z, Fear M W, Suk Choi Y, et al. The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int J Biochem Cell Biol, 2020, 126: 105802.
|
12. |
Booth A J, Hadley R, Cornett A M, et al. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Respir Crit Care Med, 2012, 186(9): 866-876.
|
13. |
Zhang C, Wang S, Lau J, et al. IL-23 amplifies the epithelial-mesenchymal transition of mechanically conditioned alveolar epithelial cells in rheumatoid arthritis-associated interstitial lung disease through mTOR/S6 signaling. Am J Physiol Lung Cell Mol Physiol, 2021, 321(6): L1006-L1022.
|
14. |
Li G, Chen S, Zhang Y, et al. Matrix stiffness regulates α-TAT1-mediated acetylation of α-tubulin and promotes silica-induced epithelial-mesenchymal transition via DNA damage. J Cell Sci, 2021, 134(2): jcs243394.
|
15. |
Phan T H G, Paliogiannis P, Nasrallah G K, et al. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci, 2021, 78(5): 2031-2057.
|
16. |
Heise R L, Stober V, Cheluvaraju C, et al. Mechanical stretch induces epithelial-mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity. J Biol Chem, 2011, 286(20): 17435-17444.
|
17. |
Parimon T, Yao C, Stripp B R, et al. Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int J Mol Sci, 2020, 21(7): 2269.
|
18. |
Froese A R, Shimbori C, Bellaye P S, et al. Stretch-induced activation of transforming growth factor-β1 in pulmonary fibrosis. Am J Respir Crit Care Med, 2016, 194(1): 84-96.
|
19. |
Kuhn H, Zobel C, Vollert G, et al. High amplitude stretching of ATII cells and fibroblasts results in profibrotic effects. Exp Lung Res, 2019, 45(7): 167-174.
|
20. |
Yang Y, Hu L, Xia H, et al. Resolvin D1 attenuates mechanical stretch-induced pulmonary fibrosis via epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol, 2019, 316(6): L1013-L1024.
|
21. |
张容, 毛璞, 傅威, 等. 机械牵张对人肺上皮细胞转分化的影响. 中华危重病急救医学, 2013, 25(8): 455-459.
|
22. |
Tschumperlin D J, Lagares D. Mechano-therapeutics: targeting mechanical signaling in fibrosis and tumor stroma. Pharmacol Ther, 2020, 212: 107575.
|
23. |
Wang N, Butler J P, Ingber D E. Mechanotransduction across the cell surface and through the cytoskeleton. Science, 1993, 260(5111): 1124-1127.
|
24. |
Henderson N C, Arnold T D, Katamura Y, et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med, 2013, 19(12): 1617-1624.
|
25. |
Decaris M L, Schaub J R, Chen C, et al. Dual inhibition of αvβ6 and αvβ1 reduces fibrogenesis in lung tissue explants from patients with IPF. Respir Res, 2021, 22(1): 265.
|
26. |
Fu Y, Wan P, Zhang J, et al. Targeting mechanosensitive Piezo1 alleviated renal fibrosis through p38MAPK-YAP pathway. Front Cell Dev Biol, 2021, 9: 741060.
|
27. |
Zhang Y, Jiang L, Huang T, et al. Mechanosensitive cation channel Piezo1 contributes to ventilator-induced lung injury by activating RhoA/ROCK1 in rats. Respir Res, 2021, 22(1): 250.
|
28. |
Achanta S, Jordt S E. Transient receptor potential channels in pulmonary chemical injuries and as countermeasure targets. Ann N Y Acad Sci, 2020, 1480(1): 73-103.
|
29. |
Hennes A, Held K, Boretto M, et al. Functional expression of the mechanosensitive PIEZO1 channel in primary endometrial epithelial cells and endometrial organoids. Sci Rep, 2019, 9(1): 1779.
|
30. |
Van den Eynde C, de Clercq K, Vriens J. Transient receptor potential channels in the epithelial-to-mesenchymal transition. Int J Mol Sci, 2021, 22(15): 8188.
|
31. |
Wang J, He Y, Yang G, et al. Transient receptor potential canonical 1 channel mediates the mechanical stress-induced epithelial-mesenchymal transition of human bronchial epithelial (16HBE) cells. Int J Mol Med, 2020, 46(1): 320-330.
|
32. |
Gokey J J, Patel S D, Kropski J A. The role of Hippo/YAP signaling in alveolar repair and pulmonary fibrosis. Front Med (Lausanne), 2021, 8: 752316.
|
33. |
Huang L S, Sudhadevi T, Fu P, et al. Sphingosine kinase 1/S1P signaling contributes to pulmonary fibrosis by activating Hippo/YAP pathway and mitochondrial reactive oxygen species in lung fibroblasts. Int J Mol Sci, 2020, 21(6): 2064.
|
34. |
Rock J R, Barkauskas C E, Cronce M J, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A, 2011, 108(52): E1475-E1483.
|
35. |
Liu Han, Wu Mian, Jia Yuanbo, et al. Control of fibroblast shape in sequentially formed 3D hybrid hydrogels regulates cellular responses to microenvironmental cues. NPG Asia Materials, 2020, 12: 45.
|
36. |
孙美好, 金凡力, 李建生, 等. 特发性肺纤维化的生物力学特性. 医用生物力学, 2023, 38(1): 195-201.
|
37. |
Wang Jie, Xu Lizhi, Xiang Zou, et al. Microcystin-LR ameliorates pulmonary fibrosis via modulating CD206+ M2-like macrophage polarization. Cell Death Dis, 2020, 11(2): 136.
|
38. |
Andugulapati S B, Gourishetti K, Tirunavalli S K, et al. Biochanin-A ameliorates pulmonary fibrosis by suppressing the TGF-β mediated EMT, myofibroblasts differentiation and collagen deposition in in vitro and in vivo systems. Phytomedicine, 2020, 78: 153298.
|
39. |
Pan J, Li X, Wang X, et al. MCTR1 intervention reverses experimental lung fibrosis in mice. J Inflamm Res, 2021, 14: 1873-1881.
|
40. |
Peng L, Wen L, Shi Q F, et al. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis, 2020, 11(11): 978.
|
41. |
Wang L, Liu H, He Q, et al. Galangin ameliorated pulmonary fibrosis in vivo and in vitro by regulating epithelial-mesenchymal transition. Bioorg Med Chem, 2020, 28(19): 115663.
|