1. |
Hesamian M H, Jia W, He X, et al. Deep learning techniques for medical image segmentation: achievements and challenges. Journal of digital imaging, 2019, 32(4): 582-596.
|
2. |
李肃义, 唐世杰, 李凤, 等. 基于深度学习的生物医学数据分析进展. 生物医学工程学杂志, 2020, 37(2): 349-357.
|
3. |
储珺, 林文杰, 徐鹏. 目标检测中特征不匹配问题研究进展. 南昌航空大学学报: 自然科学版, 2021, 35(3): 1-8.
|
4. |
Liu X, Song L, Liu S, et al. A review of deep-learning-based medical image segmentation methods. Sustainability, 2021, 13(3): 1224.
|
5. |
陈英, 郑铖, 易珍, 等. 肝脏及肿瘤图像分割方法综述. 计算机应用研究, 2022, 39(3): 641-650.
|
6. |
汪豪, 吉邦宁, 何刚, 等. 一种提高直肠癌诊断精度的基于U型网络和残差块的电子计算机断层扫描图像分割算法. 生物医学工程学杂志, 2022, 39(1): 166-174, 184.
|
7. |
吴玉超, 林岚, 王婧璇, 等. 基于卷积神经网络的语义分割在医学图像中的应用. 生物医学工程学杂志, 2020, 37(3): 533-540.
|
8. |
张欢, 仇大伟, 冯毅博, 等. U-Net模型改进及其在医学图像分割上的研究综述. 激光与光电子学进展, 2022, 59(2): 1-17.
|
9. |
Wang Q, Ma Y, Zhao K, et al. A comprehensive survey of loss functions in machine learning. Annals of Data Science, 2022, 9(2): 187-212.
|
10. |
Tarekegn A N, Giacobini M, Michalak K. A review of methods for imbalanced multi-label classification. Pattern Recognition, 2021, 118: 107965.
|
11. |
Jadon S. A survey of loss functions for semantic segmentation//2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Via del Mar: IEEE, 2020: 1-7.
|
12. |
Khushi M, Shaukat K, Alam T M, et al. A comparative performance analysis of data resampling methods on imbalance medical data. IEEE Access, 2021, 9: 109960-109975.
|
13. |
何鑫. 医学不平衡样本集分类关键技术研究. 成都: 电子科技大学, 2020.
|
14. |
Zhao R, Qian B, Zhang X, et al. Rethinking dice loss for medical image segmentation//2020 IEEE International Conference on Data Mining (ICDM), Sorrento: IEEE, 2020: 851-860.
|
15. |
Hasanin T, Khoshgoftaar T M, Leevy J L, et al. Examining characteristics of predictive models with imbalanced big data. Journal of Big Data, 2019, 6(1): 1-21.
|
16. |
Sugino T, Kawase T, Onogi S, et al. Loss weightings for improving imbalanced brain structure segmentation using fully convolutional networks//Healthcare, London: MDPI, 2021, 9(8): 938.
|
17. |
Ma J, Chen J, Ng M, et al. Loss odyssey in medical image segmentation. Medical Image Analysis, 2021, 71: 102035.
|
18. |
Ben Naceur M, Akil M, Saouli R, et al. Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy. Med Image Anal, 2020, 63: 101692.
|
19. |
Bertels J, Eelbode T, Berman M, et al. Optimizing the dice score and Jaccard index for medical image segmentation: theory and practice//International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen: Springer, 2019: 92-100.
|
20. |
Milletari F, Navab N, Ahmadi S A. V-net: fully convolutional neural networks for volumetric medical image segmentation//2016 Fourth International Conference on 3D Vision (3DV), Stanford: IEEE, 2016: 565-571.
|
21. |
Sudre C H, Li W, Vercauteren T, et al. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Canada: Springer, 2017, 2017: 240-248.
|
22. |
Bertels J, Robben D, Vandermeulen D, et al. Optimization with soft dice can lead to a volumetric bias//International MICCAI Brainlesion, Shenzhen: Springer, 2019: 89-97.
|
23. |
Zhou D, Fang J, Song X, et al. Iou loss for 2D/3D object detection//2019 International Conference on 3D Vision (3DV), Quebec City: IEEE, 2019: 85-94.
|
24. |
Cai J, Lu L, Xie Y, et al. Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function. arXiv preprint, 2017, arXiv: 1707.04912.
|
25. |
Su J, Liu Z, Zhang J, et al. DV-Net: accurate liver vessel segmentation via dense connection model with D-BCE loss function. Knowledge-Based Systems, 2021, 232: 107471.
|
26. |
黄泳嘉, 史再峰, 王仲琦, 等. 基于混合损失函数的改进型U-Net肝部医学影像分割方法. 激光与光电子学进展, 2020, 57(22): 74-83.
|
27. |
Wu Z, Shen C, Hengel A. Bridging category-level and instance-level semantic image segmentation. arXiv preprint, 2016, arXiv: 1605.06885.
|
28. |
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
|
29. |
Abraham N, Khan N M. A novel focal tversky loss function with improved attention U-Net for lesion segmentation//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice: IEEE, 2019: 683-687.
|
30. |
Salehi S S M, Erdogmus D, Gholipour A. Tversky loss function for image segmentation using 3D fully convolutional deep networks//International Workshop on Machine Learning in Medical Imaging, Quebec City: Springer, 2017: 379-387.
|
31. |
Wang P, Chung A. Focal dice loss and image dilation for brain tumor segmentation//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Spain: Springer, 2018: 119-127.
|
32. |
Zhu W, Huang Y, Zeng L, et al. AnatomyNet: deep learning for fast and fully automated whole‐volume segmentation of head and neck anatomy. Medical physics, 2019, 46(2): 576-589.
|
33. |
Chen J, Wan Z, Zhang J, et al. Medical image segmentation and reconstruction of prostate tumor based on 3D AlexNet. Computer Methods and Programs in Biomedicine, 2021, 200: 105878.
|
34. |
Hashemi S R, Salehi S S M, Erdogmus D, et al. Asymmetric similarity loss function to balance precision and recall in highly unbalanced deep medical image segmentation. arXiv preprint, 2018, arXiv: 1803.11078v3.
|
35. |
Yang S, Kweon J, Kim Y H. Major vessel segmentation on x-ray coronary angiography using deep networks with a novel penalty loss function//International Conference on Medical Imaging with Deep Learning, London: PMLR, 2019: 1-5.
|
36. |
Zhu C, Hu P, Zeng X, et al. Segmentation network with compound loss function for hydatidiform mole hydrops lesion recognition. arXiv preprint, 2022, arXiv: 2204.04956.
|
37. |
曹玉红, 徐海, 刘荪傲, 等. 基于深度学习的医学影像分割研究综述. 计算机应用, 2021, 41(8): 2273-2287.
|
38. |
Li X, Sui J, Wang Y. Three-dimensional reconstruction of fuzzy medical images using quantum algorithm. IEEE Access, 2020, 8: 218279-218288.
|
39. |
Ooi A Z H, Embong Z, Abd Hamid A I, et al. Interactive blood vessel segmentation from retinal fundus image based on canny edge detector. Sensors, 2021, 21(19): 6380.
|
40. |
Tian R, Sun G, Liu X, et al. Sobel edge detection based on weighted nuclear norm minimization image denoising. Electronics, 2021, 10(6): 655.
|
41. |
Caliva F, Iriondo C, Martinez A M, et al. Distance map loss penalty term for semantic segmentation. arXiv preprint, 2019, arXiv: 1908.03679.
|
42. |
Horn R A, Yang Z. Rank of a Hadamard product. Linear Algebra and Its Applications, 2020, 591: 87-98.
|
43. |
Kim M, Lee B D. A simple generic method for effective boundary extraction in medical image segmentation. IEEE Access, 2021, 9: 103875-103884.
|