1. |
Liu Y, Chen X, Ward R K, et al. Medical image fusion via convolutional sparsity based morphological component analysis. IEEE Signal Process Lett, 2019, 26(3): 485-489.
|
2. |
Yan H, Li Z. A multi-modal medical image fusion method in spatial domain// 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Chengdu: IEEE, 2019: 597-601.
|
3. |
Li W, Jia L, Du J. Multi-modal sensor medical image fusion based on multiple salient features with guided image filter. IEEE Access, 2019, 7: 173019-173033.
|
4. |
Yadav S P, Yadav S. Image fusion using hybrid methods in multimodality medical images. Med Biol Eng Comput, 2020, 58(4): 669-687.
|
5. |
Zhang S, Li X, Zhu R, et al. Medical image fusion algorithm based on L0 gradient minimization for CT and MRI. Multimed Tools Appl, 2021, 80(14): 21135-21164.
|
6. |
Irshad M T, Rehman H U. Gradient compass-based adaptive multimodal medical image fusion. IEEE Access, 2021, 9: 22662-22670.
|
7. |
Zhu Z, Zheng M, Qi G, et al. A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain. IEEE Access, 2019, 7: 20811-20824.
|
8. |
Gai D, Shen X, Cheng H, et al. Medical image fusion via PCNN based on edge preservation and improved sparse representation in NSST domain. IEEE Access, 2019, 7: 85413-85429.
|
9. |
Singh S, Anand R S. Multimodal medical image sensor fusion model using sparse K-SVD dictionary learning in nonsubsampled shearlet domain. IEEE Trans Instrum Meas, 2019, 69(2): 593-607.
|
10. |
Meng L, Guo X, Li H. MRI/CT fusion based on latent low rank representation and gradient transfer. Biomed Signal Process Control, 2019, 53: 101536.
|
11. |
Ullah H, Ullah B, Wu L, et al. Multi-modality medical images fusion based on local-features fuzzy sets and novel sum-modified-Laplacian in non-subsampled shearlet transform domain. Biomed Signal Process Control, 2020, 57: 101724.
|
12. |
Sayadi M, Ghassemian H, Naimi R, et al. A new composite multimodality image fusion method based on shearlet transform and retina inspired model// 2020 International Conference on Machine Vision and Image Processing (MVIP). Iran: IEEE, 2020: 1-5.
|
13. |
Panigrahy C, Seal A, Mahato N K. MRI and SPECT image fusion using a weighted parameter adaptive dual channel PCNN. IEEE Signal Process Lett, 2020, 27: 690-694.
|
14. |
Zhu R, Li X, Zhang X, et al. MRI and CT medical image fusion based on synchronized-anisotropic diffusion model. IEEE Access, 2020, 8: 91336-91350.
|
15. |
Goyal B, Dogra A, Khoond R, et al. An efficient medical assistive diagnostic algorithm for visualisation of structural and tissue details in CT and MRI fusion. Cognit Comput, 2021, 13(6): 1471-1483.
|
16. |
Zhang L, Zhang Y, Ma S, et al. CT and MRI image fusion algorithm based on hybrid ℓ0ℓ1 layer decomposing and two-dimensional variation transform. Biomed Signal Process Control, 2021, 70: 103024.
|
17. |
Zhu R, Li X, Zhang X, et al. HID: the hybrid image decomposition model for MRI and CT fusion. IEEE J Biomed Health Inform, 2021, 26(2): 727-739.
|
18. |
Faragallah O S, Muhammed A N, Taha T S, et al. PCA based SVD fusion for MRI and CT medical images. J Intell Fuzzy Syst, 2021, 41(2): 4021-4033.
|
19. |
Polinati S, Bavirisetti D P, Rajesh K N, et al. The fusion of MRI and CT medical images using variational mode decomposition. Appl Sci, 2021, 11(22): 10975.
|
20. |
Nian Z, Jung C. CNN-based multi-focus image fusion with light field data// 2019 IEEE International Conference on Image Processing (ICIP). Taipei: IEEE, 2019: 1044-1048.
|
21. |
Liang X, Hu P, Zhang L, et al. MCFNet: multi-layer concatenation fusion network for medical images fusion. IEEE Sens J, 2019, 19(16): 7107-7119.
|
22. |
Maneesha P, Singh T, Nayar R, et al. Multi modal medical image fusion using convolution neural network// 2019 Third International Conference on Inventive Systems and Control (ICISC). Coimbatore: IEEE, 2019: 351-357.
|
23. |
Zhang Y, Liu Y, Sun P, et al. IFCNN: a general image fusion framework based on convolutional neural network. Information Fusion, 2020, 54: 99-118.
|
24. |
Wang K, Zheng M, Wei H, et al. Multi-modality medical image fusion using convolutional neural network and contrast pyramid. Sensors, 2020, 20(8): 2169.
|
25. |
Ma J, Yu W, Liang P, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion. Inform Fusion, 2019, 48: 11-26.
|
26. |
Xu H, Liang P, Yu W, et al. Learning a generative model for fusing infrared and visible images via conditional generative adversarial network with dual discriminators// Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI). Macao: ACM, 2019: 3954-3960.
|
27. |
Ma J, Xu H, Jiang J, et al. DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans Image Process, 2020, 29: 4980-4995.
|
28. |
Isola P, Zhu J Y, Zhou T H, et al. Image-to-image translation with conditional adversarial networks// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5967-5976.
|
29. |
Shi W Z, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883.
|
30. |
Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: Learning where to look for the pancreas. arXiv, 2018: 1804.03999.
|