1. |
Jochymczyk-Woźniak K, Nowakowska-Lipiec K, Zadon H, et al. Gait kinematics index, global symmetry index and gait deviations profile: concept of a new comprehensive method of gait pathology evaluation. Acta of Bioengineering and Biomechanics, 2020, 22(4): 61-73.
|
2. |
Stork M, Weissar P, Kosturik K, et al. Use of accelerometer for walk-run or shot analysis for sport and rehabilitation purposes//International Conference on Applied Electronics (AE), 2016, 6: 261-264.
|
3. |
Lopez-Meyer P, Fulk G D, Sazonov E S, et al. Automatic detection of temporal gait parameters in poststroke individuals. IEEE Transactions on Information Technology in Biomedicine, 2011, 15(4): 594-601.
|
4. |
朱琳, 刘洋, 刘元旻, 等. 脑卒中患者常用下肢辅助设备干预下步态分析的对比研究. 中国康复医学杂志, 2022, 37(7): 901-906.
|
5. |
刘展豪, 冯重睿, 鲁发华, 等. 三维步态指导下的骨盆控制训练对偏瘫患者的影响. 国际医药卫生导报, 2022, 28(9): 1292-1296.
|
6. |
丁航, 沈林勇, 吴曦, 等. 用于改善帕金森病冻结步态的可穿戴技术. 传感技术学报, 2017, 30(6): 807-813.
|
7. |
Schmitt A C, Daniels J N, Baudendistel S T, et al. The primary gait screen in Parkinson's disease: comparison to standardized measures. Gait & Posture, 2019, 73: 71-73.
|
8. |
Shin J H, Yu R, Kang M K, et al. High preoperative gait variability is a prognostic predictor of gait and balance in Parkinson disease patients with deep brain stimulation. Parkinsonism & Related Disorders, 2022, 100: 1-5.
|
9. |
Behboodi A, Zahradka N, Wright H, et al. Real-time detection of seven phases of gait in children with cerebral palsy using two gyroscopes. Sensors, 2019, 19(11): 2517.
|
10. |
Tsitlakidis S, Schwarze M, Westhauser F, et al. Gait indices for characterization of patients with unilateral cerebral palsy. Journal of Clinical Medicine, 2020, 9(12): 3888.
|
11. |
Vij N, Laber C, Schmidt K. Current applications of gait analysis after total knee arthroplasty: a scoping review. Journal of Clinical Orthopaedics and Trauma, 2022, 33: 102014.
|
12. |
Booij M J, van Royen B J, Nolte P A, et al. Total knee arthroplasty improves gait adaptability in osteoarthritis patients; a pilot study. Journal of Orthopaedics, 2022, 34: 304-309.
|
13. |
Aqueveque P, Germany E, Osorio R, et al. Simple gait segmentation method using a novel plantar pressure measurement system with custom-made capacitive sensors: preliminary results//IEEE Global Humanitarian Technology Conference (GHTC), 2019, 17: 1-4.
|
14. |
孟青云, 谈士力, 喻洪流, 等. 基于青年人足底压力测试的步态实验研究. 生物医学工程学杂志, 2014, 31(5): 984-988, 1000.
|
15. |
方正, 张兴亮, 王超, 等. 基于青年人足底压力测试的步态实验研究. 生物医学工程学杂志, 2014, 31(6): 1278-1282, 1293.
|
16. |
Wang C, Wang X, Long Z, et al. Estimation of spatial-temporal gait parameters based on the fusion of inertial and film-pressure signals//IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2018, 3: 1232-1239.
|
17. |
李春华, 郇战, 陈学杰, 等. 基于加速度变化的步态识别方法. 传感技术学报, 2020, 33(5): 693-698.
|
18. |
汪涛, 汪泓章, 夏懿, 等. 基于卷积神经网络与注意力模型的人体步态识别. 传感技术学报, 2019, 32(7): 1027-1033.
|
19. |
Natarajan P, Fonseka R D, Sy L W, et al. Analysing gait patterns in degenerative lumbar spine disease using inertial wearable sensors: an observational study. World Neurosurgery, 2022, 163: e501-e515.
|
20. |
Chen Y W, Liao W W, Chen C L, et al. Kinematic descriptions of upper limb function using simulated tasks in activities of daily living after stroke. Human Movement Science, 2021, 79: 102834.
|
21. |
Yalamanchili S, Abboud R, Wang W. A model to calculate the joint movements and forces in the foot//9th International Conference on Electronic Measurement & Instruments, Beijing: IEEE, 2009. DOI: 10.1109/ICEMI.2009.5274026.
|
22. |
Antico M, Balletti N, Laudato G, et al. Postural control assessment via Microsoft Azure Kinect DK: an evaluation study. Computer Methods and Programs in Biomedicine, 2021, 209: 106324.
|
23. |
Schlagenhauf F, Sreeram S, Singhose W. Comparison of Kinect and Vicon Motion Capture of upper-body joint angle tracking//IEEE 14th International Conference on Control and Automation (ICCA), 2018: 674-679.
|
24. |
Summa S, Tartarisco G, Favetta M, et al. Spatio-temporal parameters of ataxia gait dataset obtained with the Kinect. Data in Brief, 2020, 32: 106307.
|
25. |
Pashley G L, Kahn M B, Williams G, et al. Assessment of upper limb abnormalities using the Kinect: reliability, validity and detection accuracy in people living with acquired brain injury. Journal of Biomechanics, 2021, 129: 110825.
|
26. |
Jamali Z, Behzadipour S. Quantitative evaluation of parameters affecting the accuracy of Microsoft Kinect in gait analysis//23rd Iranian Conference on Biomedical Engineering and 1st International Iranian Conference on Biomedical Engineering (ICBME), 2016, 24: 306-311.
|
27. |
Ashwini K, Amutha R, Nagarajan K K, et al. Kinect based upper limb performance assessment in daily life activities//International Conference on Wireless Communications Signal Processing and Networking (WISPNET), 2019: 201-205.
|
28. |
Cimolin V, Galli M. Summary measures for clinical gait analysis: a literature review. Gait & Posture, 2014, 39(4): 1005-1010.
|
29. |
Morel E, Armand S, Assal F, et al. Normal pressure hydrocephalus and CSF tap test response: the gait phenotype matters. Journal of Neural Transmission (Vienna), 2021, 128(1): 121-125.
|
30. |
Hessert M J, Vyas M, Leach J, et al. Foot pressure distribution during walking in young and old adults. BMC Geriatrics, 2005, 5: 8.
|
31. |
张笑宇,陈凯,杨颖. 基于Kinect系统的步态参数提取方法. 数据采集与处理, 2022, 37(4): 872-882.
|