1. |
Li X, Wu X, Liu B, et al. Improving access to assistive technologies for persons with disabilities in China: Practice, opportunities and challenges. Global Perspectives On Assistive Technology, 2019: 480-494.
|
2. |
程洪, 黄瑞, 邱静, 等. 康复机器人及其临床应用综述. 机器人, 2021, 43(5): 606-619.
|
3. |
Esquenazi A, Talaty M. Robotics for lower limb rehabilitation. Phys Med Rehabil Clin N Am, 2019, 30(2): 385-397.
|
4. |
赵新刚, 谈晓伟, 张弼. 柔性下肢外骨骼机器人研究进展及关键技术分析. 机器人, 2020, 42(3): 365-384.
|
5. |
韩稷钰, 王衍鸿, 万大千. 下肢外骨骼康复机器人的研究进展及发展趋势. 上海交通大学学报(医学版), 2022, 42(2): 241-246.
|
6. |
Thacham Poyil A, Steuber V, Amirabdollahian F. Adaptive robot mediated upper limb training using electromyogram-based muscle fatigue indicators. PLoS One, 2020, 15(5): e0233545.
|
7. |
Enoka R M, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol, 2008, 586(1): 11-23.
|
8. |
Barsotti A, Khalaf K, Gan D. Muscle fatigue evaluation with EMG and Acceleration data: a case study// Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Piscataway: IEEE, 2020: 3138-3141.
|
9. |
Peternel L, Tsagarakis N, Caldwell D, et al. Robot adaptation to human physical fatigue in human–robot co-manipulation. Auton Robot, 2017, 42(5): 1011-1021.
|
10. |
Artemiadis P K, Kyriakopoulos K J. An EMG-based robot control scheme robust to time-varying EMG signal features. IEEE Trans Inf Technol Biomed, 2010, 14(3): 582-588.
|
11. |
Li Z, Zhang M, Zhang X, et al. Assessment of cerebral oxygenation during prolonged simulated driving using near infrared spectroscopy: its implications for fatigue development. Eur J Appl Physiol, 2009, 107(3): 281-287.
|
12. |
Huang X, Ai Q. A comparison of assessment methods for muscle fatigue in muscle fatigue contraction// Balas V, Jain L, Zhao X. Information technology and intelligent transportation systems. Berlin: Springer, 2017: 491-501.
|
13. |
Cifrek M, Medved V, Tonković S, et al. Surface EMG based muscle fatigue evaluation in biomechanics. Clin Biomech, 2009, 24(4): 327-340.
|
14. |
Fernando J B, Yoshioka M, Ozawa J. Estimation of muscle fatigue by ratio of mean frequency to average rectified value from surface electromyography// Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Piscataway: IEEE, 2016: 5303-5306.
|
15. |
Nagamine K, Iwasawa Y, Matsuo Y, et al. An estimation of wheelchair user’s muscle fatigue by accelerometers on smart devices// Proceedings of the Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers. New York: ACM, 2015: 57-60.
|
16. |
Meeusen R, Watson P, Hasegawa H, et al. Central fatigue. Sports Med, 2006, 36(10): 881-909.
|
17. |
Ramos G, Vaz J R, Mendonça G V, et al. Fatigue evaluation through machine learning and a global fatigue descriptor. J Healthc Eng, 2020, 2020: 6484129.
|
18. |
Chandra S, Hayashibe M, Thondiyath A. Muscle fatigue induced hand tremor clustering in dynamic laparoscopic manipulation. IEEE T Syst Man Cy-S, 2020, 50(12): 5420-5431.
|
19. |
Aryal A, Ghahramani A, Becerik-Gerber B. Monitoring fatigue in construction workers using physiological measurements. Automat Constr, 2017, 82: 154-165.
|
20. |
张弼. 基于块状结构模型的非线性自适应控制方法研究. 沈阳: 东北大学, 2017.
|
21. |
Mehmood A, Raja M A Z, Shi P, et al. Weighted differential evolution-based heuristic computing for identification of Hammerstein systems in electrically stimulated muscle modeling. Soft Comput, 2022, 26: 8929-8945.
|
22. |
Zhang Z, Chu B, Liu Y, et al. Multimuscle functional-electrical-stimulation-based wrist tremor suppression using repetitive control. IEEE-ASME T Mech, 2022, 27(5): 3988-3998.
|
23. |
Li Y, Chen W, Chen J, et al. Neural network based modeling and control of elbow joint motion under functional electrical stimulation. Neurocomputing, 2019, 340: 171-179.
|
24. |
Le F, Markovsky I, Freeman C T, et al. Identification of electrically stimulated muscle models of stroke patients. Control Eng Prac, 2010, 18(4): 396-407.
|
25. |
Le F, Markovsky I, Freeman C T, et al. Recursive identification of Hammerstein systems with application to electrically stimulated muscle. Control Eng Prac, 2012, 20(4): 386-396.
|
26. |
Buchanan T S, Lloyd D G, Manal K, et al. Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J Appl Biomech, 2004, 20(4): 367-395.
|
27. |
Hunt K J, Munih M, Donaldson N D N, et al. Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle. IEEE Trans Biomed Eng, 1998, 45(8): 998-1009.
|
28. |
Wu A R, Dzeladini F, Brug T J H, et al. An adaptive neuromuscular controller for assistive lower-limb exoskeletons: A preliminary study on subjects with spinal cord injury. Front Neurorobot, 2017, 11: 30.
|
29. |
Markowitz J, Krishnaswamy P, Eilenberg M F, et al. Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model. Philos Trans R Soc B Biol Sci, 2011, 366(1570): 1621-1631.
|
30. |
Lloyd D G, Besier T F. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech, 2003, 36(6): 765-776.
|
31. |
Han J, Ding Q, Xiong A, et al. A state-space EMG model for the estimation of continuous joint movements. IEEE Trans Indus Electron, 2015, 62(7): 4267-4275.
|
32. |
Borg G A. Psychophysical bases of perceived exertion. Med Sci Sports Exerc, 1982, 14(5): 377-381.
|
33. |
方崇智, 萧德云. 过程辨识. 北京: 清华大学出版杜, 1988: 160-165.
|
34. |
Golub G H, Van Loan C F. Matrix computations. Second edition. London: The Johns Hopkins University Press, 1989.
|
35. |
Hogan N. Impedance control: An approach to manipulation: Part II—Implementation. J Dyn Sys Meas Control, 1985, 107(1): 8-16.
|
36. |
蔡自兴, 徐光祐. 人工智能及其应用. 北京: 清华大学出版社, 2020.
|
37. |
Hermens H J, Freriks B, Disselhorst-Klug C, et al. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol, 2000, 10(5): 361-374.
|
38. |
Tan X, Zhang B, Liu G, et al. Phase variable based recognition of human locomotor activities across diverse gait patterns. IEEE T Hum-Mach Syst, 2021, 51(6): 684-695.
|
39. |
Tan X, Zhang B, Liu G, et al. Cadence-insensitive soft exoskeleton design with adaptive gait state detection and iterative force control. IEEE T Autom Sci Eng, 2022, 19(3): 2108-2121.
|
40. |
Chen W, Li G, Li N, et al. Soft exoskeleton with fully actuated thumb movements for grasping assistance. IEEE T Robot, 2022, 38(4): 2194-2207.
|