1. |
刘袖洞, 于炜婷, 王为, 等. 海藻酸钠和壳聚糖聚电解质微胶囊及其生物医学应用. 化学进展, 2008, 20(1): 14.
|
2. |
Yang J, Yao J, Wang, S. Electromechanical response performance of a reinforced biomass gel artificial muscle based on natural polysaccharide of sodium alginate doped with an ionic liquid for micro-nano regulation. Carbohydr Polym, 2022, 275: 118717.
|
3. |
Wang L, Zhang H J, Liu X, et al. A physically cross-linked sodium alginate–gelatin hydrogel with high mechanical strength. ACS Applied Polymer Materials, 2021, 3(6): 3197-3205.
|
4. |
Liu J, Shang S, Jiang Z, et al. Facile fabrication of chemically modified sodium alginate fibers with enhanced mechanical performance. AATCC J Res, 2022(1): 9.
|
5. |
周烨, 雷世婵, 罗勉, 等. 海藻酸钠微球制备方法进展. 生物化工, 2021, 7(1): 3.
|
6. |
严丽华, 郭圣荣. 海藻酸钠微球的制备及其应用进展. 绿色科技, 2017(24): 4.
|
7. |
Mørch Ýrr A, Donati I, Strand B L, et al. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules, 2006, 7(5): 1471.
|
8. |
Lee K Y, Mooney D J. Alginate: properties and biomedical applications. Prog Polym Sci, 2012, 37(1): 106-126.
|
9. |
Tiraton T, Suwantong O, Chuysinuan P, et al. Biodegradable microneedle fabricated from sodium alginate-gelatin for transdermal delivery of clindamycin. Mater Today Commun, 2022, 32: 104158.
|
10. |
Uyen N T T, Hamid Z A A, Tram N X T, et al. Fabrication of alginate microspheres for drug delivery: A review. Int J Biol Macromol, 2020, 153: 1035-1046.
|
11. |
Brun-Graeppi A K, Richard C, Bessodes M, et al. Cell microcarriers and microcapsules of stimuli-responsive polymers. J Control Release, 2011, 149(3): 209-224.
|
12. |
Guarino V, Altobelli R, Sala F D, et al. Alginate processing routes to fabricate bioinspired platforms for tissue engineering and drug delivery// Rehm B H A, Moradali M F. Alginates and their biomedical applications. Singapore: Springer Singapore, 2018: 101-120.
|
13. |
Wang X, Zhu J, Shao T, et al. Production of highly monodisperse millimeter‐sized double‐emulsion droplets in a coaxial capillary device. Chem Eng Technol, 2019, 42(6): 1330-1340.
|
14. |
Liao M, Wang C, Hong Y, et al. Industrial scale production of fibre batteries by a solution-extrusion method. Nat Nanotechnol, 2022, 17(4): 372-377.
|
15. |
Ching S H, Bansal N, Bhandari B. Alginate gel particles-A review of production techniques and physical properties. Crit Rev Food Sci Nutr, 2017, 57(6): 1133-1152.
|
16. |
Liew S N, Utra U, Alias A K, et al. Physical, morphological and antibacterial properties of lime essential oil nanoemulsions prepared via spontaneous emulsification method. LWT, 2020, 128(2): 109388.
|
17. |
Chong D, Liu X, Ma H, et al. Advances in fabricating double-emulsion droplets and their biomedical applications. Microfluid Nanofluid, 2015, 19(5): 1071-1090.
|
18. |
Ali R. Preparation and characterization of dexamethasone polymeric nanoparticle by membrane emulsification method. J Nanopart Res, 2020, 22(11): 314.
|
19. |
Hayati I, Bailey A I, Tadros T F. Investigations into the mechanisms of electrohydrodynamic spraying of liquids. Pt.I. Effect of electric field and the environment on pendant drop and factors affecting the formation of stable jets and atomization. J Colloid Interface Sci, 1987, 117(1): 205–221.
|
20. |
Hayati I, Bailey A, Tadros T F. Investigations into the mechanism of electrohydrodynamic spraying of liquids: II. Mechanism of stable jet formation and electrical forces acting on a liquid cone. J Colloid Interface Sci, 1986, 117(1): 222-230.
|
21. |
Jaworek A. Micro- and nanoparticle production by electrospraying. Powder Technol, 2007, 176(1): 18-35.
|
22. |
Xu M, Liu T, Qin M, et al. Bone-like hydroxyapatite anchored on alginate microspheres for bone regeneration. Carbohydr Polym, 2022, 287: 119330.
|
23. |
Castrovilli M C, Tempesta E, Cartoni A, et al. Fabrication of a new, low-cost, and environment-friendly laccase-based biosensor by electrospray immobilization with unprecedented reuse and storage performances. ACS Sustain Chem Eng, 2022, 10(5): 1888-1898.
|
24. |
Rehg T, Dorger C, Chau P C. Application of an atomizer in producing small alginate gel beads for cell immobilization. Biotechnol Lett, 1986, 8(2): 111-114.
|
25. |
Salem D R. 1 - Electrospinning of nanofibers and the charge injection method// Brown P J, Stevens K. Nanofibers and nanotechnology in textiles. Sawston: Woodhead Publishing, 2007: 3-21.
|
26. |
Workamp M, Alaie S, Dijksman J A. Coaxial air flow device for the production of millimeter-sized spherical hydrogel particles. Rev Sci Instrum, 2016, 87(12): 125113.
|
27. |
Zhou J, Pei Z. Experimental study of the piezoelectric drop-on-demand drop formation in a coaxial airflow. Chem Eng Process, 2020, 147: 107778.
|
28. |
Koch S, Schwinger C, Kressler J, et al. Alginate encapsulation of genetically engineered mammalian cells: Comparison of production devices, methods and microcapsule characteristics. J Microencapsul, 2003, 20(3): 303-316.
|
29. |
储茂泉, 刘国杰. 喷雾干燥法制备载药微球时的形貌与粒度控制. 化工学报, 2004, 55(11): 1903-1907.
|
30. |
Grenha A, Seijo B, Remunan-Lopez C. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci, 2005, 25(4-5): 427-437.
|
31. |
Yashaswini Devi G V, Prabhu A, Anil S, et al. Preparation and characterization of dexamethasone loaded sodium alginate-graphene oxide microspheres for bone tissue engineering. J Drug Deliv Sci Technol, 2021, 64: 102624.
|
32. |
Thomas R G, Unnithan A R, Moon M J, et al. Electromagnetic manipulation enabled calcium alginate Janus microsphere for targeted delivery of mesenchymal stem cells. Int J Biol Macromol, 2018, 110: 465-471.
|
33. |
Zhao D, Wang X, Cheng B, et al. Degradation-kinetics-controllable and tissue-regeneration-matchable photocross-linked alginate hydrogels for bone repair. ACS Appl Mater Interfaces, 2022, 14(19): 21886-21905.
|
34. |
Miao F, Liu T, Zhang X, et al. Engineered bone tissues using biomineralized gelatin methacryloyl/sodium alginate hydrogels. J Biomater Sci Polym Ed, 2022, 33(2): 137-154.
|
35. |
Huang X, Fu Q, Deng Y, et al. Surface roughness of silk fibroin/alginate microspheres for rapid hemostasis in vitro and in vivo. Carbohydr Polym, 2021, 253(1): 117256.
|
36. |
Jin J, Ji Z, Xu M, et al. Microspheres of carboxymethyl chitosan, sodium alginate, and collagen as a hemostatic agent in vivo. ACS Biomater Sci Eng, 2018, 4(7): 2541-2551.
|
37. |
Wang Y, Wang P, Ji H, et al. Analysis of safety and effectiveness of sodium alginate/poly (gamma-glutamic acid) microspheres for rapid hemostasis. ACS Appl Bio Mater, 2021, 4(8): 6539-6548.
|
38. |
Xie M, Zeng Y, Wu H, et al. Multifunctional carboxymethyl chitosan/oxidized dextran/sodium alginate hydrogels as dressing for hemostasis and closure of infected wounds. Int J Biol Macromol, 2022, 219: 1337-1350.
|
39. |
Chang S, Qin D, Yan R, et al. Temperature and pH dual responsive nanogels of modified sodium alginate and NIPAM for berberine loading and release. ACS Omega, 2021, 6(2): 1119-1128.
|
40. |
Mao X, Li X, Zhang W, et al. Development of microspheres based on thiol-modified sodium alginate for intestinal-targeted drug delivery. ACS Appl Bio Mater, 2019, 2(12): 5810-5818.
|