1. |
张剑锋, 陈光华, 高博. 基于光电容积脉搏波的脉搏信息提取研究. 电子测量技术, 2019, 42(13): 117-120.
|
2. |
Banik P P, Hossain S, Kwon T H, et al. Development of a wearable reflection-type pulse oximeter system to acquire clean PPG signals and measure pulse rate and SpO2 with and without finger motion. Electronics, 2020, 9(11): 1905.
|
3. |
吴海燕, 季忠, 李孟泽. 基于脉搏波的无创连续血压监测模型簇研究. 仪器仪表学报, 2020, 41(7): 224-234.
|
4. |
Sardana H K, Kanwade R, Tewary S. Arrhythmia detection and classification using ECG and PPG techniques: A review. Phys Eng Sci Med, 2021, 44(4): 1027-1048.
|
5. |
戴凤智, 芦鹏, 朱宇璇. 基于多传感器的睡眠监测与评估系统设计. 国外电子测量技术, 2022, 41(4): 126-133.
|
6. |
Passman R. Mobile health technologies in the diagnosis and management of atrial fibrillation. Curr Opin Cardiol, 2022, 37(1): 1-9.
|
7. |
Kasambe P V, Rathod S S. VLSI wavelet based denoising of PPG signal. Proc Comput Sci, 2015, 49: 282-288.
|
8. |
Li Q, Clifford G D. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals. Physiol Meas, 2012, 33(9): 1491-1501.
|
9. |
Petterson M T, Begnoche V L, Graybeal J M. The effect of motion on pulse oximetry and its clinical significance. Anesth Analg, 2007, 105(6): S78-S84.
|
10. |
张爱华, 常婷婷, 漆宇晟, 等. 基于脉搏信号融合分析的心率监测方法. 电子测量与仪器学报, 2020, 34(10): 163-171.
|
11. |
Fisher C, Dömer B, Wibmer T, et al. An algorithm for real-time pulse waveform segmentation and artifact detection in photoplethysmograms. IEEE J Biomed Health Inform, 2017, 21(2): 372-381.
|
12. |
Pereira T, Gadhoumi K, Ma M, et al. A supervised approach to robust photoplethysmography quality assessment. IEEE J Biomed Health Inform, 2020, 24(3): 649-657.
|
13. |
Pradhan N, Rajan S, Adler A. Evaluation of the signal quality of wrist-based photoplethysmography. Physiol Meas, 2019, 40(6): 065008.
|
14. |
Naeini E K, Azimi I, Rahmani A M, et al. A real-time PPG quality assessment approach for healthcare Internet-of-Things. Proc Comput Sci, 2019, 151: 551-558.
|
15. |
Gao H, Wu X, Shi C, et al. A LSTM-based realtime signal quality assessment for photoplethysmogram and remote photoplethysmogram// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 3831-3840.
|
16. |
Liu S H, Li R X, Wang J J, et al. Classification of photoplethysmographic signal quality with deep convolution neural networks for accurate measurement of cardiac stroke volume. Appl Sci, 2020, 10(13): 1-16.
|
17. |
Pereira T, Ding C, Gadhoumi K, et al. Deep learning approaches for plethysmography signal quality assessment in the presence of atrial fibrillation. Physiol Meas, 2019, 40(12): 125002.
|
18. |
漆宇晟, 张爱华, 马玉润. 日常无监督状态下的脉率变异性提取方法研究. 生物医学工程学杂志, 2019, 36(2): 298-305.
|
19. |
Beh W K, Wu Y H, Wu A Y A. Robust PPG-based mental workload assessment system using wearable devices. IEEE J Biomed Health Inform, 2021, 27(5): 2323-2333.
|
20. |
Yen C T, Chen U H, Wang G C, et al. Non-Invasive blood glucose estimation system based on a neural network with dual-wavelength photoplethysmography and bioelectrical impedance measuring. Sensors, 2022, 22(12): 4452.
|
21. |
Cincotta P M, Giordano C M, Silva R A, et al. The Shannon entropy: an efficient indicator of dynamical stability. Phys D, 2021, 417: 132816.
|
22. |
Niyirora J. Entropic measures of complexity in a new medical coding system. BMC Med Inform Decis Mak, 2021, 21(1): 124.
|
23. |
Ismail S, Siddiqi I, Akram U. Heart rate estimation in PPG signals using Convolutional-Recurrent Regressor. Comput Biol Med, 2022, 145: 105470.
|
24. |
Sonck J, Mizukami T, Johnson N P, et al. Development, validation, and reproducibility of the pullback pressure gradient (PPG) derived from manual fractional flow reserve pullbacks. Catheter Cardiovasc Interv, 2022, 99(5): 1518-1525.
|
25. |
Alzubaidi L, Zhang J, Humaidi A J, et al. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J Big Data, 2021, 8(1): 53.
|
26. |
Yen C T, Chang S N, Liao C H. Estimation of beat-by-beat blood pressure and heart rate from ECG and PPG using a fine-tuned deep CNN model. IEEE Access, 2022, 10: 85459-85469.
|
27. |
Liu W, Jing W, Li Y. Incorporating feature representation into BiLSTM for deceptive review detection. Computing, 2020, 102(3): 701-715.
|
28. |
Esgalhado F, Fernandes B, Vassilenko V, et al. The application of deep learning algorithms for PPG signal processing and classification. Computers, 2021, 10(12): 1-15.
|
29. |
Xu G, Meng Y, Qiu X, et al. Sentiment analysis of comment texts based on BiLSTM. IEEE Access, 2019, 7: 51522-51532.
|
30. |
Thakur S, Kumar A. X-ray and CT-scan-based automated detection and classification of covid-19 using convolutional neural networks (CNN). Biomed Signal Process Control, 2021, 69: 102920.
|