1. |
程洪, 黄瑞, 邱静, 等. 康复机器人及其临床应用综述. 机器人, 2021, 43(5): 606-619.
|
2. |
佀国宁, 黄琬婷, 李根生, 等. 下肢外骨骼机器人柔顺特性的研究进展. 生物医学工程学杂志, 2019, 36(1): 157-163.
|
3. |
魏小东, 孟青云, 喻洪流, 等. 下肢外骨骼机器人研究进展. 中国康复医学杂志, 2019, 34(4): 491-495.
|
4. |
孙茂文, 欧阳小平, 王泽正, 等. 泵控外骨骼机器人行走协同控制策略. 机械工程学报, 2022, 58(18): 159-169.
|
5. |
张琦, 田梦倩, 李伟强, 等. 复式套索人工肌肉驱动的下肢外骨骼的运动控制. 机器人, 2021, 43(2): 214-223.
|
6. |
邓静, 姜文正, 高海波, 等. 外骨骼足端人机接触力测量装置研究. 机械与电子, 2022, 40(9): 65-70.
|
7. |
莫松海, 曹恒, 朱钧, 等. 基于步态状态机的康复型下肢外骨骼控制方法. 中国科技论文, 2018, 13(16): 1889-1895.
|
8. |
曹慧林, 于随然. 下肢康复外骨骼机器人结构拟人设计与运动学分析. 机械设计与研究, 2020, 36(4): 12-17.
|
9. |
Chen Lingxing, Chen Chunjie, Wang Zhuo, et al. A novel lightweight wearable soft exosuit for reducing the metabolic rate and muscle fatigue. Biosensors, 2021, 11(7): 215.
|
10. |
Xue T, Wang Z, Zhang T, et al. Adaptive oscillator-based robust control for flexible hip assistive exoskeleton. IEEE Robot Autom Let, 2019, 4(4): 3318-3323.
|
11. |
Yang H D, Cooper M, Eckert-Erdheim A, et al. A soft exosuit assisting hip abduction for knee adduction moment reduction during walking. IEEE Robot Autom Let, 2022, 7(3): 7439-7446.
|
12. |
雷俊芳, 汤继芹. 下肢康复机器人对脊髓损伤患者步行能力改善的现状及应用. 医学信息, 2022, 35(19): 159-162.
|
13. |
Kim J, Kim Y, Kim S J. Biomechanical task-based gait analysis suggests ReWalk gait resembles crutch gait. Appl Sci, 2022, 12(24): 12574.
|
14. |
Laubscher C A, Goo A, Farris R J, et al. Hybrid impedance-sliding mode switching control of the Indego Explorer lower-limb exoskeleton in able-bodied walking. J Intell Robot Syst, 2022, 104(4): 76.
|
15. |
Strausser K A, Kazerooni H. The development and testing of a human machine interface for a mobile medical exoskeleton// IEEE/RSJ International Conference on Intelligent Robots & Systems. San Francisco: IEEE, 2011: 4911-4916.
|
16. |
Park K W, Choi J, Kong K. Hybrid model control of WalkON suit for precise and robust gait assistance of paraplegics// 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi’an: IEEE, 2021: 10385-10390.
|
17. |
Høyer E, Opheim A, Jørgensen V. Implementing the exoskeleton Ekso GTTM for gait rehabilitation in a stroke unit-feasibility, functional benefits and patient experiences. Disability and rehabilitation. Assist Technol, 2022, 17(4): 473-479.
|
18. |
Koljonen P A, Virk A S, Jeong Y, et al. Outcomes of a multicenter safety and efficacy study of the SuitX phoenix powered exoskeleton for ambulation by patients with spinal cord injury. Front Neurol, 2021, 12: 689751.
|
19. |
Koyama S, Tanabe S, Gotoh T, et al. Wearable power-assist locomotor for gait reconstruction in patients with spinal cord injury: A retrospective study. Front Neurol, 2022, 16: 775724.
|
20. |
Ren Z, Deng C, Zhao K, et al. The development of a high-speed lower-limb robotic exoskeleton. Sci China Inform Sci, 2018, 62(5): 50202.
|
21. |
Kovalenko A, Rodionov A, Kremlev D, et al. Exoskeleton “ExoAtlet” and botulinum toxin therapy in rehabilitation of stroke patients. Toxicon, 2021, 190(S1): 234278699.
|
22. |
Wang Y, Cheng H, Qiu J, et al. The AIDER system and its clinical applications. Sci China Inform Sci, 2021, 64(8): 184201.
|
23. |
Chen B, Zhong C H, Zhao X, et al. Reference joint trajectories generation of CUHK-EXO exoskeleton for system balance in walking assistance. IEEE Access, 2019, 7: 33809-33821.
|
24. |
龙建军, 王玉龙, 王同, 等. 下肢外骨骼康复机器人对偏瘫患者步态参数的影响. 中国康复医学杂志, 2021, 36(9): 1107-1110, 1117.
|
25. |
Sung J, Choi S, Kim H, et al. Feasibility of rehabilitation training with a newly developed, portable, gait assistive robot for balance function in hemiplegic patients. Ann Rehabil Med, 2017, 41(2): 178-187.
|
26. |
Zhao G, Sharbafi M, Vlutters M, et al. Template model inspired leg force feedback based control can assist human walking// 2017 International Conference on Rehabilitation Robotics (ICORR). London: IEEE, 2017: 473-478.
|
27. |
Iizuka M, Ikeda Y. Regulation and innovation under the 4th industrial revolution: The case of a healthcare robot, HAL by Cyberdyne. Technovation, 2021, 108: 102335.
|
28. |
Ortiz M, Ferrero L, Iáñez E, et al. Sensory integration in human movement: A new brain-machine interface based on gamma band and attention level for controlling a lower-limb exoskeleton. Front Bioeng Biotechnol, 2020, 8: 735.
|
29. |
Alashram A R, Annino G, Padua E. Robot-assisted gait training in individuals with spinal cord injury: A systematic review for the clinical effectiveness of Lokomat. J Clin Neurosci, 2021, 91: 260-269.
|
30. |
庞洪波, 李励, 王艳武. 脊髓损伤患者步行功能康复设备的应用进展. 黑龙江医学, 2022, 46(24): 3.
|
31. |
Chen L, Chen C, Ye X, et al. A portable waist-loaded soft exosuit for hip flexion assistance with running. Micromachines, 2022, 13(2): 157.
|
32. |
Nam Y G, Lee J W, Park J W, et al. Effects of electromechanical exoskeleton-assisted gait training on walking ability of stroke patients: a randomized controlled trial. Arch Phys Med Rehabil, 2019, 100(1): 26-31.
|
33. |
Jayaraman A, Obrien M K, Madhavan S, et al. Stride management assist exoskeleton vs functional gait training in stroke: A randomized trial. Neurology, 2019, 92(3): e263-e273.
|
34. |
Tefertiller C, Hays K, Jones J, et al. Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury. Top Spinal Cord Inj Rehabil, 2018, 24(1): 78-85.
|
35. |
Guanziroli E, Cazzaniga M, Colombo L, et al. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control. Eur J Phys Rehabil Med, 2019, 55(2): 209-216.
|
36. |
向小娜, 宗慧燕, 何红晨. 下肢外骨骼康复机器人对脊髓损伤患者步行能力改善的研究进展. 中国康复医学杂志, 2020, 35(1): 119-122.
|
37. |
Tays G, Bao S, Javidialsaadi M, et al. Consolidation of use- dependent motor memories induced by passive move-ment training. Neurosci Lett, 2020, 732: 135080.
|
38. |
陈芳, 黄俊豪, 吴文杰, 等. 下肢外骨骼机器人在脑卒中患者功能康复中应用进展. 中国康复, 2023, 38(4): 243-247.
|