1. |
Breijyeh Z, Karaman R. Comprehensive review on Alzheimer's disease: causes and treatment. Molecules. 2020, 25(24): 5789.
|
2. |
Wu L, Xian X, Xu G, et al. Toll-like receptor 4: A promising therapeutic target for Alzheimer's disease. Mediators Inflamm, 2022, 2022: 7924199.
|
3. |
Malaiya A, Singhai M, Singh M, et al. Recent update on the Alzheimer's disease progression, diagnosis and treatment approaches. Curr Drug Targets, 2022, 23(10): 978-1001.
|
4. |
Iaccarino H F, Singer A C, Martorell A J, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 2016, 540(7632): 230-235.
|
5. |
Singer A C, Martorell A J, Douglas J M, et al. Noninvasive 40-Hz light flicker to recruit microglia and reduce amyloid beta load. Nat Protoc, 2018, 13(8): 1850-1868.
|
6. |
Chen M, Chen Y, Huo Q, et al. Enhancing GABAergic signaling ameliorates aberrant gamma oscillations of olfactory bulb in AD mouse models. Mol Neurodegener. 2021, 16(1): 14.
|
7. |
Gaubert S, Raimondo F, Houot M, et al. EEG evidence of compensatory mechanisms in preclinical Alzheimer's disease. Brain. 2019, 142(7): 2096-2112.
|
8. |
张雪, 袁佩君, 王莹, 等. 知觉相关的神经振荡-外界节律同步化现象. 生物化学与生物物理进展, 2016, 43(4): 308-315.
|
9. |
Adaikkan C, Tsai L H. Gamma entrainment: Impact on neurocircuits, glia, and therapeutic opportunities. Trends Neurosci, 2020, 43(1): 24-41.
|
10. |
Adaikkan C, Middleton S J, Marco A, et al. Gamma entrainment binds higher-order brain regions and offers neuroprotection. Neuron, 2019, 102(5): 929-943.
|
11. |
Martorell A J, Paulson A L, Suk H J, et al. Multi-sensory gamma stimulation ameliorates Alzheimer's-associated pathology and iImproves cognition. Cell, 2019, 177(2): 256-271.
|
12. |
Zheng L, Yu M, Lin R, et al. Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity. Nat Commun, 2020, 11(1): 3012.
|
13. |
Vivekananda U, Bush D, Bisby J A, et al. Theta power and theta-gamma coupling support long-term spatial memory retrieval. Hippocampus, 2021, 31(2): 213-220.
|
14. |
Mclaughlin A E, Diehl G W, Redish A D. Potential roles of the rodent medial prefrontal cortex in conflict resolution between multiple decision-making systems. Int Rev Neurobiol, 2021, 158: 249-281.
|
15. |
Zielinski M C, Shin J D, Jadhav S P. Coherent coding of spatial position mediated by theta oscillations in the hippocampus and prefrontal cortex. J Neurosci, 2019, 39(23): 4550-4565.
|
16. |
Labban S, Alshehri F S, Kurdi M, et al. Melatonin improves short-term spatial memory in a mouse model of Alzheimer's disease. Degener Neurol Neuromuscul Dis, 2021, 11: 15-27.
|
17. |
Victorino D B, Faber J, Pinheiro D J L L, et al. Toward the identification of neurophysiological biomarkers for Alzheimer’s disease in down syndrome: A potential role for cross-frequency phase-amplitude coupling analysis. Aging Dis, 2023,14(2): 428-449.
|
18. |
Tamura M, Spellman T J, Rosen A M, et al. Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task. Nat Commun, 2017, 8(1): 2182.
|
19. |
Abubaker M, Al Qasem W, Kvašňák E. Working memory and cross-frequency coupling of neuronal oscillations. Front Psychol, 2021, 12: 756661.
|
20. |
Morici J F, Weisstaub N V, Zold C L. Hippocampal-medial prefrontal cortex network dynamics predict performance during retrieval in a context-guided object memory task. Proc Natl Acad Sci U S A, 2022, 119(20): e2203024119.
|
21. |
National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. 8th ed. Washington (DC): National Academies Press (US); 2011. DOI: 10.17226/12910.
|
22. |
Yang P, Wang Z, Zhang Z, et al. The extended application of the rat brain in stereotaxic coordinates in rats of various body weight. J Neurosci Methods, 2018, 307: 60-69.
|
23. |
Wang J, Zhang S, Liu T, et al. Directional prefrontal-thalamic information flow is selectively required during spatial working memory retrieval. Front Neurosci, 2022, 16: 1055986.
|
24. |
López-Madrona V J, Pérez-Montoyo E, Álvarez-Salvado E, et al. ferent theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks. Elife, 2020, 9: e57313.
|
25. |
Tort A B, Kramer M A, Thorn C, et al. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci U S A, 2008, 105(51): 20517-20522.
|
26. |
Tsoneva T, Garcia-Molina G, Desain P. Neural dynamics during repetitive visual stimulation. J Neural Eng, 2015, 12(6): 066017.
|
27. |
Lee K, Park Y, Suh S W, et al. Optimal flickering light stimulation for entraining gamma waves in the human brain. Sci Rep, 2021, 11(1): 16206.
|
28. |
He Q, Colon-Motas K M, Pybus A F, et al. A feasibility trial of gamma sensory flicker for patients with prodromal Alzheimer’s disease. Alzheimers Dement (N Y), 2021, 7(1): e12178.
|
29. |
Zibrandtsen I C, Agger M, Kjaer T W. Gamma entrainment in a large retrospective cohort: Implications for photic stimulation therapy for Alzheimer's disease. J Alzheimers Dis, 2020, 75(4): 1181-1190.
|