1. |
Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods, 2009, 6(5): 377-382..
|
2. |
Picelli S, Bjorklund A K, Faridani O R, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods, 2013, 10(11): 1096-1098..
|
3. |
Zheng G X, Terry J M, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun, 2017, 8: E14049..
|
4. |
Yu J, Cheng W, Jia M, et al. Toxicity of perfluorooctanoic acid on zebrafish early embryonic development determined by single-cell RNA sequencing. J Hazard Mater, 2022, 427: E127888..
|
5. |
Petitpre C, Faure L, Uhl P, et al. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nat Commun, 2022, 13(1): E3878..
|
6. |
Hou W, Ji Z, Ji H, et al. A systematic evaluation of single-cell RNA-sequencing imputation methods. Genome Biol, 2020, 21(1): E218..
|
7. |
Chen M, Zhou X. VIPER: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies. Genome Biol, 2018, 19(1): E196..
|
8. |
Tang Wenhao, Bertaux F, Thomas P, et al. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data. Bioinformatics, 2020, 36(4): 1174-1181..
|
9. |
Huang M, Wang J, Torre E, et al. SAVER: gene expression recovery for single-cell RNA sequencing. Nat Methods, 2018, 15(7): 539-542..
|
10. |
Zheng Y, Zhong Y, Hu J, et al. SCC: an accurate imputation method for scRNA-seq dropouts based on a mixture model. BMC Bioinformatics, 2021, 22(1): E5..
|
11. |
Li W V, Li J J. An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat Commun, 2018, 9(1): E997..
|
12. |
Zand M, Ruan J. Network-based single-cell RNA-seq data imputation enhances cell type identification. Genes (Basel), 2020, 11(4): E377..
|
13. |
van Dijk D, Sharma R, Nainys J, et al. Recovering gene interactions from single-cell data using data diffusion. Cell, 2018, 174(3): 716-729..
|
14. |
Xu X, Yu X, Hu G, et al. Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis. Brief Bioinform, 2022, 23(4): Ebbac275..
|
15. |
Liu Q, Luo X, Li J, et al. scESI: evolutionary sparse imputation for single-cell transcriptomes from nearest neighbor cells. Brief Bioinform, 2022, 23(5): Ebbac144..
|
16. |
Azim R, Wang S, Dipu S A. CDSImpute: An ensemble similarity imputation method for single-cell RNA sequence dropouts. Comput Biol Med, 2022, 146: E105658..
|
17. |
Malec M, Kurban H, Dalkilic M. ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data. BMC Bioinformatics, 2022, 23(1): E291..
|
18. |
Tran D, Tran B, Nguyen H, et al. A novel method for single-cell data imputation using subspace regression. Sci Rep, 2022, 12(1): E2697..
|
19. |
Leote A C, Wu X, Beyer A. Regulatory network-based imputation of dropouts in single-cell RNA sequencing data. PLoS Comput Biol, 2022, 18(2): Ee1009849..
|
20. |
Jin K, Ou-Yang L, Zhao X M, et al. scTSSR: gene expression recovery for single-cell RNA sequencing using two-side sparse self-representation. Bioinformatics, 2020, 36(10): 3131-3138..
|
21. |
Qi J, Sheng Q, Zhou Y, et al. scMTD: a statistical multidimensional imputation method for single-cell RNA-seq data leveraging transcriptome dynamic information. Cell Biosci, 2022, 12(1): E142..
|
22. |
Peng T, Zhu Q, Yin P, et al. SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data. Genome Biol, 2019, 20(1): E88..
|
23. |
Mongia A, Sengupta D, Majumdar A. McImpute: Matrix completion based imputation for single cell RNA-seq Data. Front Genet, 2019, 10: E9..
|
24. |
Xu J, Cai L, Liao B, et al. CMF-Impute: an accurate imputation tool for single-cell RNA-seq data. Bioinformatics, 2020, 36(10): 3139-3147..
|
25. |
Zhang L, Zhang S. Imputing single-cell RNA-seq data by considering cell heterogeneity and prior expression of dropouts. J Mol Cell Biol, 2021, 13(1): 29-40..
|
26. |
Hu Y, Li B, Zhang W, et al. WEDGE: imputation of gene expression values from single-cell RNA-seq datasets using biased matrix decomposition. Brief Bioinform, 2021, 22(5): Ebbab085..
|
27. |
Pan X, Li Z, Qin S, et al. ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion. BMC Genomics, 2021, 22(1): E860..
|
28. |
Linderman G C, Zhao J, Roulis M, et al. Zero-preserving imputation of single-cell RNA-seq data. Nat Commun, 2022, 13(1): E192..
|
29. |
Jin K, Li B, Yan H, et al. Imputing dropouts for single-cell RNA sequencing based on multi-objective optimization. Bioinformatics, 2022, 38(12): 3222-3230..
|
30. |
Su Y, Wang F, Zhang S, et al. scWMC: weighted matrix completion-based imputation of scRNA-seq data via prior subspace information. Bioinformatics, 2022, 38(19): 4537-4545..
|
31. |
Chi W, Deng M. Sparsity-penalized stacked denoising autoencoders for imputing single-cell RNA-seq data. Genes (Basel), 2020, 11(5): E532..
|
32. |
Chen S, Yan X, Zheng R, et al. Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data. Brief Bioinform, 2023, 24(1): Ebbac580..
|
33. |
Eraslan G, Simon L M, Mircea M, et al. Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun, 2019, 10: E390..
|
34. |
Wu X, Zhou Y. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data. Brief Bioinform, 2022, 23(5): Ebbac313..
|
35. |
Wu W, Liu Y, Dai Q, et al. G2S3: A gene graph-based imputation method for single-cell RNA sequencing data. PLoS Comput Biol, 2021, 17(5): Ee1009029..
|
36. |
Talwar D, Mongia A, Sengupta D, et al. AutoImpute: Autoencoder based imputation of single-cell RNA-seq data. Sci Rep, 2018, 8: E16329..
|
37. |
Arisdakessian C, Poirion O, Yunits B, et al. DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data. Genome Biol, 2019, 20(1): E211..
|
38. |
Badsha M B, Li R, Liu B, et al. Imputation of single-cell gene expression with an autoencoder neural network. Quant Biol, 2020, 8(1): 78-94..
|
39. |
Li H, Brouwer C R, Luo W. A universal deep neural network for in-depth cleaning of single-cell RNA-Seq data. Nat Commun, 2022, 13(1): E1901..
|
40. |
Karikomi M, Zhou P, Nie Q. DURIAN: an integrative deconvolution and imputation method for robust signaling analysis of single-cell transcriptomics data. Brief Bioinform, 2022, 23(4): Ebbac223..
|
41. |
Li X, Li S, Huang L, et al. High-throughput single-cell RNA-seq data imputation and characterization with surrogate-assisted automated deep learning. Brief Bioinform, 2022, 23(1): Ebbab368..
|
42. |
Islam M T, Wang J Y, Ren H, et al. Leveraging data-driven self-consistency for high-fidelity gene expression recovery. Nat Commun, 2022, 13(1): E7142..
|
43. |
Xu C, Cai L, Gao J. An efficient scRNA-seq dropout imputation method using graph attention network. BMC Bioinformatics, 2021, 22(1): E582..
|
44. |
Rao J, Zhou X, Lu Y, et al. Imputing single-cell RNA-seq data by combining graph convolution and autoencoder neural networks. iScience, 2021, 24(5): E102393..
|
45. |
Wang J, Ma A, Chang Y, et al. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Nat Commun, 2021, 12(1): E1882..
|
46. |
Liu J, Pan Y, Ruan Z, et al. SCDD: a novel single-cell RNA-seq imputation method with diffusion and denoising. Brief Bioinform, 2022, 23(5): Ebbac398..
|
47. |
Patruno L, Maspero D, Craighero F, et al. A review of computational strategies for denoising and imputation of single-cell transcriptomic data. Brief Bioinform, 2021, 22(4): Ebbaa222..
|
48. |
Wang M, Gan J, Han C, et al. Imputation methods for scRNA sequencing data. Appl Sci, 2022, 12(20): E10684..
|