1. |
Pryzdial E L G, Lee F M H, Lin B H, et al. Blood coagulation dissected. Transfus Apher Sci, 2018, 57(4): 449-457.
|
2. |
Furie B, Furie B C. Mechanisms of disease: mechanisms of thrombus formation. New Engl J Med, 2008, 359(9): 938-949.
|
3. |
Salinas D. Viscoelastic studies: effective tools for trauma and surgical resuscitation efforts. AORN J, 2017, 105(4): 370-383.
|
4. |
Faraoni D, Dinardo J A. Viscoelastic hemostatic assays: update on technology and clinical applications. Am J Hematol, 2021, 96(10): 1331-1337.
|
5. |
Shen L, Tabaie S, Ivascu N. Viscoelastic testing inside and beyond the operating room. J Thorac Dis, 2017, 9(S4): S299-S308.
|
6. |
Volod O, Bunch C M, Zackariya N, et al. Viscoelastic hemostatic assays: a primer on legacy and new generation devices. J Clin Med, 2022, 11(3): 860-881.
|
7. |
Hoffman M, Monroe D M III. A cell-based model of hemostasis. J Thromb Haemost, 2001, 85(6): 958-965.
|
8. |
Chapin J C, Hajjar K A. Fibrinolysis and the control of blood coagulation. Blood Rev, 2015, 29(1): 17-24.
|
9. |
Johnson S, Chueh J, Gounis M, et al. Mechanical behavior of in vitro blood clots and the implications for acute ischemic stroke treatment. J Neurointerv Surg, 2020, 12(9): 853-857.
|
10. |
Tomaiuolo G, Carciati A, Caserta S, et al. Blood linear viscoelasticity by small amplitude oscillatory flow. Rheol Acta, 2016, 55(6): 485-495.
|
11. |
王哲, 于源华, 于占江, 等. 电磁振动式凝血过程动态测试传感器. 仪器仪表学报, 2018, 39(1): 127-135.
|
12. |
Wang Z, Yu YH, Yu Z J, et al. Spring support electromagnetic induction-based detection sensor for the coagulation process. Microsyst Technol, 2019, 25(7): 2683-2692.
|
13. |
Henderson J H. Robust transducer for viscoelastic measurement: US5895842. 1999-04-20.
|
14. |
中国科学院苏州生物医学工程技术研究所. 一种基于振动传感器的血液黏弹性测量方法: 20211120151.X. 2021-11-12.
|
15. |
Demkin V P, Mel’nichuk S V, Rudenko T V, et al. Analysis of viscoelastic parameters of fluids by low-frequency piezoelastography. Bull Exp Biol Med, 2020, 168(3): 413-417.
|
16. |
Hartmann J, Murphy M, Dias J D. Viscoelastic hemostatic assays: moving from the laboratory to the site of care-a review of established and emerging technologies. Diagnostics, 2020, 10(2): 118-131.
|
17. |
Clark D. Precision measurement of loudspeaker parameters. J Audio Eng Soc, 1997, 45(3): 129-141.
|
18. |
Dickason V. Loudspeaker design cookbook. 7th ed. Peterborough: Audio Amateur Press, 2006: 4-5, 201-202.
|
19. |
Appolito J D, Raichel D R. Testing loudspeakers. J Acoust Soc Am, 1999, 106(2): 539-540.
|
20. |
薛政. 动圈扬声器非线性参数辨识. 南京: 南京大学, 2018.
|
21. |
孔晓鹏. 电动扬声器分数阶建模及非线性失真分析. 长沙: 国防科学技术大学, 2015.
|
22. |
Klippel W. Scanning the magnetic field of electro-dynamic transducers. J Audio Eng Soc, 2012, 60(6): 452-458.
|
23. |
Merit B, Novak A. Magnet-only loudspeaker magnetic circuits: a solution for significantly lower current distortion. J Audio Eng Soc, 2015, 63(6): 463-474.
|
24. |
Koerner L J, Secord T W. An embedded electrical impedance analyzer based on the AD5933 for the determination of voice coil motor mechanical properties. Sensor Actuat A Phys, 2019, 295: 99-112.
|
25. |
Maundy B J, Elwakil A S, Gift S J G. Enhancing the improved Howland circuit. Int J Circ Theor App, 2019, 47(4): 532-541.
|
26. |
Tang S, Li C L, Hou Y Q. A suppressing method for spur caused by amplitude quantization in DDS. IEEE Access, 2019, 7: 62344-62351.
|
27. |
南卓江, 陶卫, 赵辉. 激光三角测量技术的应用与前景. 自动化仪表, 2019, 40(12): 1-5.
|
28. |
Yang H W, Tao W, Zhang Z Q, et al. Reduction of the influence of laser beam directional dithering in a laser triangulation displacement probe. Sensors, 2017, 17(5): 1126-1136.
|
29. |
Li Z, Chen X, Liu Y Z, et al. Temperature compensation of laser triangular displacement sensor// 2019 Chinese Automation Congress (CAC2019). Hangzhou: IEEE, 2019: 4661-4667.
|
30. |
Antunes F, Felix L B. Comparison of signal preprocessing techniques for avoiding spectral leakage in auditory steady-state responses. Res Biomed Eng, 2019, 35(2): 251-256.
|
31. |
李刚, 汤宏颖, 林凌. 运用过采样与成形信号技术提高检测灵敏度. 天津大学学报, 2010, 43(10): 901-905.
|