1. |
Schulze M, Kötter I, Ernemann U, et al. MRI findings in inflammatory muscle diseases and their noninflammatory mimics. Am J Roentgenol, 2009, 192(6): 1708-1716.
|
2. |
Dalakas M C. Polymyositis, dermatomyositis, and inclusion-body myositis. New Engl J Med, 1991, 325(21): 1487-1498.
|
3. |
Amato A A, Barohn R J. Idiopathic inflammatory myopathies. Neurol Clin, 1997, 15(3): 615-648.
|
4. |
Lang X, He B, Zhang Y, et al. Adaptive clutter filtering for ultrafast Doppler imaging of blood flow using fast multivariate empirical mode decomposition// 2021 IEEE International Ultrasonics Symposium (IUS). Xi'an: IEEE, 2021: 1-4.
|
5. |
Botar-Jid C, Dudea S M, Damian L, et al. The role of gray-scale ultrasound in assessment of myositis. Ultraschall Med, 2008, 29: PP_9_9.
|
6. |
Noto Y I, Shiga K, Tsuji Y, et al. Contrasting echogenicity in flexor digitorum profundus–flexor carpi ulnaris: A diagnostic ultrasound pattern in sporadic inclusion body myositis. Muscle Nerve, 2014, 49(5): 745-748.
|
7. |
He B, Lei J, Lang X, et al. Ultra-fast ultrasound blood flow velocimetry for carotid artery with deep learning. Artif Intell Med, 2023, 144: 102664.
|
8. |
蒋林芮, 曾妮, 苗青山, 等. 荧光共振能量转移聚合物胶束及其作为药物载体的研究进展. 生物医学工程学杂志, 2022, 39(5): 1022-1032.
|
9. |
Nodera H, Sogawa K, Takamatsu N, et al. Texture analysis of sonographic muscle images can distinguish myopathic conditions. J Med Invest, 2019, 66(3.4): 237-247.
|
10. |
Burlina P, Billings S, Joshi N, et al. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods. PLoS One, 2017, 12(8): e0184059.
|
11. |
Uçar E. Classification of myositis from muscle ultrasound images using deep learning. Biomed Signal Proces, 2022, 71: 103277.
|
12. |
Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. Mobilenets, 2017, 10: 151.
|
13. |
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift// International Conference on Machine Learning. Lille: PMLR, 2015: 448-456.
|
14. |
Lin M, Chen Q, Yan S. Network in network. arXiv preprint arXiv: 2013, 1312.4400.
|
15. |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE 2018: 7132-7141.
|
16. |
Wang H, Zhu Y, Green B, et al. Axial-DeepLab: Stand-alone axial-attention for panoptic segmentation// European Conference on Computer Vision (ECCV). Glasgow: Springer, 2020: 108-126.
|
17. |
Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module// Proceedings of the European Conference on Computer Vision (ECCV). Munich: Springer, 2018: 3-19.
|
18. |
Hou Q, Zhang L, Cheng M M, et al. Strip pooling: Rethinking spatial pooling for scene parsing// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington: IEEE, 2020: 4003-4012.
|
19. |
Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Virtual: IEEE, 2021: 13713-13722.
|
20. |
Lang X, ur Rehman N, Zhang Y, et al. Median ensemble empirical mode decomposition. Signal Process, 2020, 176: 107686.
|
21. |
Lang X, Zhang Y, Xie L, et al. Detrending and denoising of industrial oscillation data. IEEE T Ind Inform, 2022, 19(4): 5809-5820.
|
22. |
Zhao M, Zhong S, Fu X, et al. Deep residual shrinkage networks for fault diagnosis. IEEE T Ind Inform, 2019, 16(7): 4681-4690.
|
23. |
Rose M R, enMC iBM Working Group. 188th ENMC International Workshop: inclusion body myositis, 2–4 December 2011, Naarden, The Netherlands. Neuromuscular Disord, 2013, 23(12): 1044-1055.
|
24. |
Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization// Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice: IEEE 2017: 618-626.
|