1. |
Frerichs I, Amato M B, van Kaam A H, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT development study group. Thorax, 2017, 72(1): 83-93.
|
2. |
Spinelli E, Kircher M, Stender B, et al. Unmatched ventilation and perfusion measured by electrical impedance tomography predicts the outcome of ARDS. Crit Care, 2021, 25(1): 192.
|
3. |
Kohli P, Kelly V J, Kehl E G, et al. Perfusion imaging distinguishes exercise pulmonary arterial hypertension at rest. Am J Respir Crit Care Med, 2019, 199(11): 1438-1441.
|
4. |
Foronda F A K, Fernandes L R, Lahoz A L C, et al. Electrical impedance tomography clues to detect pulmonary thrombosis in a teenager with COVID-19. Pediatr Radiol, 2022, 52(1): 144-147.
|
5. |
中国卫生信息与健康医疗大数据学会重症医学分会标准委员会, 北京肿瘤学会重症医学专业委员会,中国重症肺电阻抗工作组. 肺电阻抗成像技术在重症呼吸管理中的临床应用中国专家共识. 中华医学杂志, 2022, 102(9): 615-628.
|
6. |
Mueller J L. Evaluation of pulmonary structure and function in patients with cystic fibrosis from electrical impedance tomography data. Methods Mol Biol, 2022, 2393: 733-750.
|
7. |
Xu M, He H, Long Y. Lung perfusion assessment by bedside electrical impedance tomography in critically ill patients. Front Physiol, 2021, 12: 748724.
|
8. |
Bluth T, Kiss T, Kircher M, et al. Measurement of relative lung perfusion with electrical impedance and positron emission tomography: an experimental comparative study in pigs. Br J Anaesth, 2019, 123(2): 246-254.
|
9. |
Borges J B, Cronin J N, Crockett D C, et al. Real-time effects of PEEP and tidal volume on regional ventilation and perfusion in experimental lung injury. Intensive Care Med Exp, 2020, 8(1): 10.
|
10. |
He H, Chi Y, Long Y, et al. Three broad classifications of acute respiratory failure etiologies based on regional ventilation and perfusion by electrical impedance tomography: a hypothesis-generating study. Ann Intensive Care, 2021, 11(1): 134.
|
11. |
Frerichs I, Hinz J, Herrmann P, et al. Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging. IEEE Trans Med Imaging, 2002, 21(6): 646-652.
|
12. |
Kircher M, Elke G, Stender B, et al. Regional lung perfusion analysis in experimental ARDS by electrical impedance and computed tomography. IEEE Trans Med Imaging, 2021, 40(1): 251-261.
|
13. |
Mauri T, Spinelli E, Scotti E, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019. Crit Care Med, 2020, 48(8): 1129-1134.
|
14. |
Kühnel G, Hahn G, Frerichs I, et al. Neue verfahren zur verbesserung der abbildungsqualität bei funktionellen EIT-Tomogrammen der lunge [New methods for improving the image quality of functional electric impedance tomography]. Biomedizinische Technik [Biomedizinische Technik], 1997, 42: 470.
|
15. |
Stowe S, Boyle A, Sage M, et al. Comparison of bolus- and filtering-based EIT measures of lung perfusion in an animal model. Physiol Meas, 2019, 40(5): 054002.
|
16. |
Braun F, Proença M, Adler A, et al. Accuracy and reliability of noninvasive stroke volume monitoring via ECG-gated 3D electrical impedance tomography in healthy volunteers. PLoS One, 2018, 13(1): e0191870.
|
17. |
Braun F, Proença M, Wendler A, et al. Noninvasive measurement of stroke volume changes in critically ill patients by means of electrical impedance tomography. J Clin Monit Comput, 2020, 34(5): 903-911.
|
18. |
Koolman P M, Bukshtynov V. A multiscale optimization framework for reconstructing binary images using multilevel PCA-based control space reduction. Biomed Phys Eng Express, 2021, 7(2): 025005.
|
19. |
Jang G Y, Jeong Y J, Zhang T, et al. Noninvasive, simultaneous, and continuous measurements of stroke volume and tidal volume using EIT: feasibility study of animal experiments. Sci Rep, 2020, 10(1): 11242.
|
20. |
Fagerberg A, Stenqvist O, Aneman A. Monitoring pulmonary perfusion by electrical impedance tomography: an evaluation in a pig model. Acta Anaesthesiol Scand, 2009, 53(2): 152-158.
|
21. |
Putensen C, Hentze B, Muenster S, et al. Electrical impedance tomography for cardio-pulmonary monitoring. J Clin Med, 2019, 8(8): 1176.
|
22. |
Shin K, Mueller JL. Calderón's method with a spatial prior for 2-D EIT imaging of ventilation and perfusion. Sensors (Basel), 2021, 21(16): 5635.
|
23. |
Li Z, Zhang J, Liu D, et al. CT image-guided electrical impedance tomography for medical imaging. IEEE Trans Med Imaging, 2020, 39(6): 1822-1832.
|
24. |
Li Z, Qin S, Chen C, et al. Emerging trends and hot spots of electrical impedance tomography applications in clinical lung monitoring. Front Med (Lausanne), 2022, 8: 813640.
|
25. |
Zantonelli G, Cozzi D, Bindi A, et al. Acute pulmonary embolism: prognostic role of computed tomography pulmonary angiography (CTPA). Tomography, 2022, 8(1): 529-539.
|
26. |
Nguyen M D, Duong T L, McEwan A. An efficient and fast multi-band focused bioimpedance solution with EIT-based reconstruction for pulmonary embolism assessment: a simulation study from massive to segmental blockage. Physiol Meas, 2022, 43(2). DOI: 10.1088/1361-6579/ac4830.
|
27. |
He H, Chi Y, Long Y, et al. Bedside evaluation of pulmonary embolism by saline contrast electrical impedance tomography method: a prospective observational study. Am J Respir Crit Care Med, 2020, 202(10): 1464-1468.
|
28. |
Wang X, Zhao H, Cui N. The role of electrical impedance tomography for management of high-risk pulmonary embolism in a postoperative patient. Front Med (Lausanne), 2021, 8: 773471.
|
29. |
Prins S A, Weller D, Labout J A M, et al. Electrical impedance tomography as a bedside diagnostic tool for pulmonary embolism. Crit Care Explor, 2023, 5(1): e0843.
|
30. |
Maron B A, Abman S H, Elliott C G, et al. Pulmonary arterial hypertension: diagnosis, treatment, and novel advances. Am J Respir Crit Care Med, 2021, 203(12): 1472-1487.
|
31. |
Singh N, Mullin C J. Diagnosis of pulmonary hypertension. Rhode Island Medical Journal, 2021, 104(7): 30-35.
|
32. |
Proença M, Braun F, Solà J, et al. Noninvasive pulmonary artery pressure monitoring by EIT: a model-based feasibility study. Med Biol Eng Comput, 2017, 55(6): 949-963.
|
33. |
Proença M, Braun F, Lemay M, et al. Non-invasive pulmonary artery pressure estimation by electrical impedance tomography in a controlled hypoxemia study in healthy subjects. Sci Rep, 2020, 10(1): 21462.
|
34. |
Hovnanian A L D, Costa E L V, Hoette S, et al. Electrical impedance tomography in pulmonary arterial hypertension. PLoS One, 2021, 16(3): e0248214.
|
35. |
Matthay M A, Arabi Y, Arroliga A C, et al. A new global definition of acute respiratory distress syndrome. Am J Respir Crit Care Med, 2023, DOI: 10.1164/rccm.202303-0558WS.
|
36. |
Perier F, Tuffet S, Maraffi T, et al. Electrical impedance tomography to titrate positive end-expiratory pressure in COVID-19 acute respiratory distress syndrome. Crit Care, 2020, 24(1): 678.
|
37. |
Victorino J A, Borges J B, Okamoto V N, et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med, 2004, 169(7): 791-800.
|
38. |
Pavlovsky B, Pesenti A, Spinelli E, et al. Effects of PEEP on regional ventilation-perfusion mismatch in the acute respiratory distress syndrome. Crit Care, 2022, 26(1): 211.
|
39. |
Cao G, Wu Y, Zhao Y, et al. Assessment of extravascular lung water by measuring the number of pulmonary ultrasound B-lines before and after CBP in patients with MODS. Medicine (Baltimore), 2021, 100(1): e24181.
|
40. |
Kunst P W, Vonk Noordegraaf A, Raaijmakers E, et al. Electrical impedance tomography in the assessment of extravascular lung water in noncardiogenic acute respiratory failure. Chest, 1999, 116(6): 1695-702.
|