1. |
Yang C, Ma Y, Xie L, et al. Intracranial pressure monitoring in the intensive care unit for patients with severe traumatic brain injury: analysis of the CENTER-TBI China registry. Neurocrit Care, 2022, 37(1): 160-171.
|
2. |
Smith M. Monitoring intracranial pressure in traumatic brain injury. Anesth Analg, 2008, 106(1): 240-248.
|
3. |
Cremer O L. Does ICP monitoring make a difference in neurocritical care?. Eur J Anaesthesiol Suppl, 2008, 42: 87-93.
|
4. |
Shi W T, Forsberg F, Raichlen J S, et al. Pressure dependence of subharmonic signals from contrast microbubbles. Ultrasound Med Biol, 1999, 25(2): 275-283.
|
5. |
Halldorsdottir V G, Dave J K, Leodore L M, et al. Subharmonic contrast microbubble signals for noninvasive pressure estimation under static and dynamic flow conditions. Ultrason Imaging, 2011, 33(3): 153-164.
|
6. |
Dave J K, Halldorsdottir V G, Eisenbrey J R, et al. Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles. IEEE Trans Ultrason Ferroelectr Freq Control, 2011, 58(10): 2056-2066.
|
7. |
Dave J K, Halldorsdottir V G, Eisenbrey J R, et al. Noninvasive LV pressure estimation using subharmonic emissions from microbubbles. JACC Cardiovasc Imaging, 2012, 5(1): 87-92.
|
8. |
Dave J K, Halldorsdottir V G, Eisenbrey J R, et al. Investigating the efficacy of subharmonic aided pressure estimation for portal vein pressures and portal hypertension monitoring. Ultrasound Med Biol, 2012, 38(10): 1784-1798.
|
9. |
Andersen K S, Jensen J A. Impact of acoustic pressure on ambient pressure estimation using ultrasound contrast agent. Ultrasonics, 2010, 50(2): 294-299.
|
10. |
Frinking P J, Brochot J, Arditi M. Subharmonic scattering of phospholipid-shell microbubbles at low acoustic pressure amplitudes. IEEE Trans Ultrason Ferroelectr Freq Control, 2010, 57(8): 1762-1771.
|
11. |
Li F, Li D, Yan F. Improvement of detection sensitivity of microbubbles as sensors to detect ambient pressure. Sensors, 2018, 18(12): 4083.
|
12. |
Nio A Q X, Faraci A, Christensen-Jeffries K, et al. Optimal control of SonoVue microbubbles to estimate hydrostatic pressure. IEEE Trans Ultrason Ferroelectr Freq Control, 2020, 67(3): 557-567.
|
13. |
Halldorsdottir V G, Dave J K, Marshall A, et al. Subharmonic-aided pressure estimation for monitoring interstitial fluid pressure in tumors: calibration and treatment with paclitaxel in breast cancer xenografts. Ultrasound Med Biol, 2017, 43(7): 1401-1410.
|
14. |
向恒, 阳锐, 邹远文等. 超声亚谐波无创评估门静脉压力的体外实验研究. 生物医学工程学杂志, 2020, 37(6): 1073-1079.
|
15. |
Xu G, Lu H, Yang H, et al. Subharmonic scattering of SonoVue microbubbles within 10-40 mmHg overpressures in vitro. IEEE Trans Ultrason Ferroelectr Freq Control, 2021, 68(12): 3583-3591.
|
16. |
Lu H, Xu G, Wang Y, et al. Correlation between portal vein pressure and subharmonic scattering signals from SonoVue microbubbles in canines. Ultrasound Med Biol, 2023, 49(1): 203-211.
|
17. |
Zheng S, Zhang Y, Cheng L, et al. Noninvasive assessment of intracranial pressure using subharmonic-aided pressure estimation: an experimental study in canines. J Trauma Acute Care Surg, 2022, 93(6): 882-888.
|
18. |
Wang Y, Lu H, Huang L, et al. Noninvasive estimation of tumor interstitial fluid pressure from subharmonic scattering of ultrasound contrast microbubbles. Biosensors (Basel), 2023, 13(5): 528.
|
19. |
Xu G, Wang Y, Lu H, et al. Portal vein pressure estimation and portal hypertension discrimination based on subharmonic scattering of ultrasound contrast agent microbubbles. IEEE Trans Biomed Eng, 2023, PP. DOI: 10.1109/TBME.2023.3293952.
|
20. |
Mace E, Montaldo G, Osmanski B F, et al. Functional ultrasound imaging of the brain: theory and basic principles. IEEE Trans Ultrason Ferroelectr Freq Control, 2013, 60(3): 492-506.
|
21. |
Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control, 2014, 61(1): 102-119.
|
22. |
Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature, 2015, 527(7579): 499-502.
|
23. |
Couture O, Hingot V, Heiles B, et al. Ultrasound localization microscopy and super-resolution: A state of the art. IEEE Trans Ultrason Ferroelectr Freq Control, 2018, 65(8): 1304-1320.
|
24. |
Gupta I, Eisenbrey J, Stanczak M, et al. Effect of pulse shaping on subharmonic aided pressure estimation in vitro and in vivo. J Ultrasound Med, 2017, 36(1): 3-11.
|
25. |
Goertz D E, de Jong N, van der Steen A F W. Attenuation and size distribution measurements of Definity™ and manipulated Definity™ populations. Ultrasound Med Biol, 2007, 33(9): 1376-1388.
|
26. |
Goertz D E, Cherin E, Needles A, et al. High frequency nonlinear B-scan imaging of microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control, 2005, 52(1): 65-79.
|
27. |
Goertz D E, Needles A, Burns P N, et al. High-frequency, nonlinear flow imaging of microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control, 2005, 52(3): 495-502.
|
28. |
Marmottant P, van der Meer S, Emmer M, et al. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J Acoust Soc Am, 2005, 118(6): 3499-3505.
|
29. |
Sarkar K, Katiyar A, Jain P. Growth and dissolution of an encapsulated contrast microbubble: effects of encapsulation permeability. Ultrasound Med Biol, 2009, 35(8): 1385-1396.
|
30. |
何蒙娜, 姜玉新, 吕珂. 超声造影剂Sonazoid与SonoVue的物理特征及临床特点比较. 中国医学影像技术, 2015, 31(2): 306-309.
|
31. |
van Hoeve W, de Vargas Serrano M, Te Winkel L, et al. Improved sensitivity of ultrasound-based subharmonic aided pressure estimation using monodisperse microbubbles. J Ultrasound Med, 2022, 41(7): 1781-1789.
|