1. |
Nia H T, Munn L L, Jain R K. Physical traits of cancer. Science. 2020, 370(6516): eaaz0868.
|
2. |
Kalukula Y, Stephens A D, Lammerding J, et al. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol, 2022, 23(9): 583-602.
|
3. |
Song Y, Soto J, Chen B, et al. Transient nuclear deformation primes epigenetic state and promotes cell reprogramming. Nat Mater, 2022, 21(10): 1191-1199.
|
4. |
Kalukula Y, Luciano M, Gabriele S. Translating cell mechanobiology and nuclear deformations to the clinic. Clin Transl Med, 2022, 12(7): e1000.
|
5. |
Echarri A. A multisensory network drives nuclear mechanoadaptation. Biomolecules, 2022, 12(3): 404.
|
6. |
Lomakin A J, Cattin C J, Cuvelier D, et al. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science, 2020, 370(6514): eaba2894.
|
7. |
Shen Z, Niethammer P. A cellular sense of space and pressure. Science, 2020, 370(6514): 295-296.
|
8. |
Enyedi B, Jelcic M, Niethammer P. The cell nucleus serves as a mechanotransducer of tissue damage-induced inflammation. Cell, 2016, 165(5): 1160-1170.
|
9. |
Aureille J, Buffière-Ribot V, Harvey B E, et al. Nuclear envelope deformation controls cell cycle progression in response to mechanical force. EMBO Rep, 2019, 20(9): e48084.
|
10. |
Seelbinder B, Ghosh S, Schneider S E, et al. Nuclear deformation guides chromatin reorganization in cardiac development and disease. Nat Biomed Eng, 2021, 5(12): 1500-1516.
|
11. |
Heo S J, Cosgrove B D, Dai E N, et al. Mechano-adaptation of the stem cell nucleus. Nucleus, 2018, 9(1): 9-19.
|
12. |
Aifuwa I, Kim B C, Kamat P, et al. Senescent stroma induces nuclear deformations in cancer cells via the inhibition of RhoA/ROCK/myosin II-based cytoskeletal tension. PNAS Nexus, 2022, 2(1): pgac270.
|
13. |
Li Y, Chen M, Chang W. Roles of the nucleus in leukocyte migration. J Leukoc Biol, 2022, 112(4): 771-783.
|
14. |
Venturini V, Pezzano F, Català Castro F, et al. The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science, 2020, 370(6514): eaba2644.
|
15. |
Lautscham L A, Kämmerer C, Lange J R, et al. Migration in confined 3D environments is determined by a combination of adhesiveness, nuclear volume, contractility, and cell stiffness. Biophys J, 2015, 109(5): 900-913.
|
16. |
Fracchia A, Asraf T, Salmon-Divon M, et al. Increased Lamin B1 levels promote cell migration by altering perinuclear actin organization. Cells, 2020, 9(10): 2161.
|
17. |
Roberts A B, Zhang J, Raj Singh V, et al. Tumor cell nuclei soften during transendothelial migration. J Biomech, 2021, 121: 110400.
|
18. |
Xu Zichen, Li Keming, Xin Ying, et al. Fluid shear stress regulates the survival of circulating tumor cells via nuclear expansion. J Cell Sci, 2022, 135(10): jcs259586.
|
19. |
Shah P, Hobson C M, Cheng S, et al. Nuclear deformation causes DNA damage by increasing replication stress. Curr Biol, 2021, 31(4): 753-765.
|
20. |
Bone C R, Chang Y T, Cain N E, et al. Nuclei migrate through constricted spaces using microtubule motors and actin networks in C. elegans hypodermal cells. Development, 2016, 143(22): 4193-4202.
|
21. |
Strouhalova K, Přechová M, Gandalovičová A, et al. Vimentin intermediate filaments as potential target for cancer treatment. Cancers, 2020, 12(1): 184.
|
22. |
Pogoda K, Byfield F, Deptuła P, et al. Unique role of vimentin networks in compression stiffening of cells and protection of nuclei from compressive stress. Nano Lett, 2022, 22(12): 4725-4732.
|
23. |
Cruz V E, Esra D F, Schwartz T U. Structural analysis of different LINC complexes reveals distinct binding modes. J Mol Biol, 2020, 432(23): 6028-6041.
|
24. |
Funkhouser C M, Sknepnek R, Shimi T, et al. Mechanical model of blebbing in nuclear lamin meshworks. Proc Natl Acad Sci U S A, 2013, 110(9): 3248–3253.
|
25. |
Bell E S, Shah P, Zuela-Sopilniak N, et al. Low lamin A levels enhance confined cell migration and metastatic capacity in breast cancer. Oncogene, 2022, 41(36): 4211-4230.
|
26. |
Vortmeyer-Krause M, Lindert M T, Riet J T, et al. Lamin B2 follows lamin A/C-mediated nuclear mechanics and cancer cell invasion efficacy. Cold Spring Harbor Laboratory, 2020. DOI: 10.1101/2020.04.07.028969.
|
27. |
Katiyar A, Zhang J, Antani J D, et al. The nucleus bypasses obstacles by deforming like a drop with surface tension mediated by lamin A/C. Adv Sci, 2022, 9(23): e2201248.
|
28. |
Fernandez A, Bautista M, Wu L, et al. Emerin self-assembly and nucleoskeletal coupling regulate nuclear envelope mechanics against stress. J Cell Sci, 2022, 135(6): jcs258969.
|
29. |
Niethammer P. Components and mechanisms of nuclear mechanotransduction. Annu Rev Cell Dev Biol, 2021, 37:233-256.
|
30. |
Stephens A D, Liu P Z, Banigan E J, et al. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol Biol Cell, 2018, 29(2): 220-233.
|
31. |
Sun J, Chen J, Mohagheghian E, et al. Force-induced gene up-regulation does not follow the weak power law but depends on H3K9 demethylation. Sci Adv, 2020, 6(14): eaay9095.
|
32. |
Hansen J C, Maeshima K, Hendzel M J. The solid and liquid states of chromatin. Epigenetics Chromatin, 2021, 14(1): 50.
|
33. |
Antmen E, Ermis M, Kuren O, et al. Nuclear deformability of breast cells analyzed from patients with malignant and benign breast diseases. ACS Biomater Sci Eng, 2023, 9(3): 1629-1643.
|
34. |
Antmen E, Demirci U, Hasirci V. Amplification of nuclear deformation of breast cancer cells by seeding on micropatterned surfaces to better distinguish their malignancies. Colloids Surf B Biointerfaces, 2019, 183: 110402.
|
35. |
Stowers R S, Shcherbina A, Israeli J, et al. Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nat Biomed Eng, 2019, 3(12): 1009-1019.
|
36. |
Ribeiro A J, Khanna P, Sukumar A, et al. Nuclear stiffening inhibits migration of invasive melanoma cells. Cell Mol Bioeng. 2014, 7(4): 544-551.
|
37. |
Senigagliesi B, Penzo C, Severino L U, et al. The high mobility group A1 (HMGA1) chromatin architectural factor modulates nuclear stiffness in breast cancer cells. Int J Mol Sci, 2019, 20(11): 2733.
|
38. |
Tusamda Wakhloo N, Anders S, Badique F, et al. Actomyosin, vimentin and LINC complex pull on osteosarcoma nuclei to deform on micropillar topography. Biomaterials, 2020, 234: 119746.
|
39. |
Fischer T, Hayn A, Mierke C T. Effect of nuclear stiffness on cell mechanics and migration of human breast cancer cells. Front Cell Dev Biol, 2020, 8: 393.
|